Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.
The phenomena of Dust storm take place in barren and dry regions all over the world. It may cause by intense ground winds which excite the dust and sand from soft, arid land surfaces resulting it to rise up in the air. These phenomena may cause harmful influences upon health, climate, infrastructure, and transportation. GIS and remote sensing have played a key role in studying dust detection. This study was conducted in Iraq with the objective of validating dust detection. These techniques have been used to derive dust indices using Normalized Difference Dust Index (NDDI) and Middle East Dust Index (MEDI), which are based on images from MODIS and in-situ observation based on hourly wi
Marshlands environment in southern Iraq is unique and is considered a habitat of thousands of migratory birds as shelter and a source of livelihood for thousands of people living there. Its environment is characterized by a fragile ecosystem that requires great care and effort to achieve the greatest possible balance and parallelism of development, which necessarily require careful environmental planning that accurately regulates the resources of the environment and therefore, planned the best way to use them. The idea of research for creating the spatial organization of the development of the human settlements and taking into account the environmental aspect by thinking for the plann
A novel encapsulated deep eutectic solvent (DES) was introduced for biodiesel production via a two-step process. The DES was encapsulated in medical capsules and were used to reduce the free fatty acid (FFA) content of acidic crude palm oil (ACPO) to the minimum acceptable level (< 1%). The DES was synthesized from methyltriphenylphosphonium bromide (MTPB) and p-toluenesulfonic acid (PTSA). The effects pertaining to different operating conditions such as capsule dosage, reaction time, molar ratio, and reaction temperature were optimized. The FFA content of ACPO was reduced from existing 9.61% to less than 1% under optimum operating conditions. This indicated that encapsulated MTPB-DES performed high catalytic activity in FFA esterificatio
... Show MoreThe effect of compound machine on wheat/ AlNoor cultivar was studied based on some technical indicators. were tested under three speeds ( 2.541, 3.433 and 4.091km.hr-1) and three tillage depths (14, 16 and 18cm). The experiments were conducted in a factorial experiment under complete randomized design with three replications. The results showed that the 2.541km.hr-1 practical speed was significantly better than other two speed in all studied conditions. Except for the FC, which achieved the best results with the third speed 4.091 km.hr-1. mechanical parameters, plant growth parameters and yield and growth parameters. The 1
Ultrasound is a mechanical energy which can generate altering zones of compression and rarefaction along its path in the tissues. Ultrasound imaging can provide a real time screening for blood and multiple organs to aiding the diagnostic and treatment. However, ultrasound has the potential to deposit energy in the blood and tissues causing bio effects which is depending on ultrasound characteristics that including frequency and the amount of intensity. These bio effects include either a stable cavitation presented non thermal effects or inertial cavitation of harmful effect on the tissues. The non-thermal cavitation can add features in diagnostic imaging and treatment more than the inertial cavitation. Ultrasound Contrast agents are a micro
... Show MoreA QR code is a type of barcode that can hold more information than the familiar kind scanned at checkouts around the world. The “QR” stands for “Quick Response”, a reference to the speed at which the large amounts of information they contain can be decoded by scanners. They are being widely used for advertising campaigns, linking to company websites, contest sign-up pages and online menus. In this paper, we propose an efficient module to extract QR code from background and solve problem of rotation in case of inaccurate image taken from mobile camera.
This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreAbstract  
... Show MoreThe main objective of this paper is to designed algorithms and implemented in the construction of the main program designated for the determination the tenser product of representation for the special linear group.