Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.
This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreThe derivatives formed after the successive acetylation, esterification and nitration reactions to cholic, deoxycholic, and taurocholic acids were identified to be of the following general strucure: Colt, Where RI=NO3, OH, 0=, or CH3COO. R2=H, NO3, OH, 0-=, or CH3COO. R3=H, NO3,01-1, 0=, or CH3COO. R4=OH, NH(CH2)2S03Na, NH(CH2)2S03H, or OMe. By using U.V-visible and I.R spectrophotometry . The number of hydroxyl groups was determined, purity was checked from T.L.C, Most of these derivatives will find pharmaceutical application.
The main objective of this paper is to designed algorithms and implemented in the construction of the main program designated for the determination the tenser product of representation for the special linear group.
After the year 2003 terrorist attacks knock Baghdad city capital of Iraq using bomb explosion various, shook the nation, and made public resident of Baghdad aware of the need for better ways to protect occupants, assets, and buildings cause the terrorist gangs adopt style burst of blast to injury vulnerability a wider range form, and many structures will suffer damage from air blast when the overpressure concomitant the blast wave, (i.e., the excess over the atmospheric pressure 14.7 pounds per square inch at standard sea level conditions are about one-half pound per square inch or more(
to attainment injury. Then, the distance to which this overpressure level will extend depends primarily on the energy yield (§1.20) of the burst of
Automated clinical decision support system (CDSS) acts as new paradigm in medical services today. CDSSs are utilized to increment specialists (doctors) in their perplexing decision-making. Along these lines, a reasonable decision support system is built up dependent on doctors' knowledge and data mining derivation framework so as to help with the interest the board in the medical care gracefully to control the Corona Virus Disease (COVID-19) virus pandemic and, generally, to determine the class of infection and to provide a suitable protocol treatment depending on the symptoms of patient. Firstly, it needs to determine the three early symptoms of COVID-19 pandemic criteria (fever, tiredness, dry cough and breat
... Show MorePavement crack and pothole identification are important tasks in transportation maintenance and road safety. This study offers a novel technique for automatic asphalt pavement crack and pothole detection which is based on image processing. Different types of cracks (transverse, longitudinal, alligator-type, and potholes) can be identified with such techniques. The goal of this research is to evaluate road surface damage by extracting cracks and potholes, categorizing them from images and videos, and comparing the manual and the automated methods. The proposed method was tested on 50 images. The results obtained from image processing showed that the proposed method can detect cracks and potholes and identify their severity levels wit
... Show MoreThe segmentation of aerial images using different clustering techniques offers valuable insights into interpreting and analyzing such images. By partitioning the images into meaningful regions, clustering techniques help identify and differentiate various objects and areas of interest, facilitating various applications, including urban planning, environmental monitoring, and disaster management. This paper aims to segment color aerial images to provide a means of organizing and understanding the visual information contained within the image for various applications and research purposes. It is also important to look into and compare the basic workings of three popular clustering algorithms: K-Medoids, Fuzzy C-Mean (FCM), and Gaussia
... Show MoreIn this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent root-
... Show MoreGastroesophageal reflux disease (GERD) is a prevalent clinical condition, that affects millions of individuals worldwide. Objective: To assess the level of soluble HLA-E (sHLA-E) as a biomarker in the diagnosis and immunopathogenesis of GERD patients. Methods: The case-control prospective study included 40 GERD patients who were consulted at the Gastroenterology Unit of AlKindy Teaching Hospital, as along with 40 healthy control subjects. The study period extended from January 2023 to May 2024. Blood was drawn from both groups and serum was separated to assesssHLA-E using a sandwich enzyme-linked immunosorbent assay (ELISA) kit. Results: There was a statistically significant difference in sHLA-E levels between GERD patients and healthy cont
... Show More