Preferred Language
Articles
/
XRjSM5UBVTCNdQwCoSo1
A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification
...Show More Authors

Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.

Scopus Clarivate Crossref
View Publication
Publication Date
Thu May 06 2021
Journal Name
Tesol International Journal
The Effect of Types of Blended Learning Strategies on EFL Students` Achievements
...Show More Authors

This work aims at finding out the impact of teaching types blended learning strategies on academic students` achievement. A review of related literature indicates that almost no study has ever attempted to focus specifically on the effect of the different kinds of blended learning strategies on EFL students` achievement in the educational research writing, and the present study attempts to fill this gap. The study focused on the students at the Master's degree in Educational Research Writing in the first semester of the academic year 2020/2021. The sample has selected from the college of Education Ibn-Rushd (18) students. Material has been designed for the Master candidates’ participants of the study was divided into two groups: one an e

... Show More
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Theoretical And Applied Information Technology
AN ENHANCED EVOLUTIONARY ALGORITHM WITH LOCAL HEURISTIC APPROACH FOR DETECTING COMMUNITY IN COMPLEX NETWORKS
...Show More Authors

Preview PDF
Scopus (5)
Scopus
Publication Date
Sat Jun 18 2022
Journal Name
International Journal Of Health Sciences
E-learning applications and their significance among students of the Department of Chemistry in the Faculty of Education for Pure Sciences – Ibn Al-Haytham
...Show More Authors

--The objective of the current research is to identify: 1) Preparing a scale level for e-learning applications, 2) What is the relationship between the applications of e-learning and the students of the Department of Chemistry at the Faculty of Education for Pure Sciences/ Ibn Al-Haytham – University of Baghdad. To achieve the research objectives, the researcher used the descriptive approach because of its suitability to the nature of the study objectives. The researcher built a scale for e-learning applications that consists of (40) items on the five-point Likrat scale (I agree, strongly agree, neutral, disagree, strongly disagree). He also adopted the scale of scientific values, and it consists of (40) items on a five-point scale as wel

... Show More
Preview PDF
Publication Date
Sun Feb 02 2025
Journal Name
Engineering, Technology & Applied Science Research
Automated Glaucoma Detection Techniques: A Literature Review
...Show More Authors

Significant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Engineering
Intelligent Dust Monitoring System Based on IoT
...Show More Authors

Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Education For Health
Determinants of social accountability for medical schools in Iraq: A qualitative case study
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sun Feb 10 2019
Journal Name
Journal Of The College Of Education For Women
Social Medical Care for the Deformed Children: A Field Study in Baghdad City
...Show More Authors

The Child is the first sedum for the human society performing, and we deal in our
research to explain the nature of the mutual relations in between the form and the medicine
social caring foundation. So the motherhood and the childhood nowadays become the most
dedicated in the researchers works, whom interesting in the social affairs, and that whom
work in the medicine field as scientists.
So the child is the future man and must be in wright body construction that need to great
care and interest to make him wright mind through capability of performing anything support
to him.
In our research we deal with the main factors in which lead to infect the child by the
creative malfunction, like the environmental and m

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 22 2020
Journal Name
Collaboration And Integration In Construction, Engineering, Management And Technology
A Hybrid Conceptual Model for BIM Adoption in Facilities Management: A Descriptive Analysis for the Collected Data
...Show More Authors

View Publication
Scopus (3)
Scopus Crossref
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation
...Show More Authors

Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (8)
Scopus Crossref
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Medical Image Segmentation using Modified Interactive Thresholding Technique
...Show More Authors

Medical image segmentation is one of the most actively studied fields in the past few decades, as the development of modern imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT), physicians and technicians nowadays have to process the increasing number and size of medical images. Therefore, efficient and accurate computational segmentation algorithms become necessary to extract the desired information from these large data sets. Moreover, sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures presented in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning. Many of the proposed algorithms could perform w

... Show More
View Publication Preview PDF