Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.
Multiple linear regressions are concerned with studying and analyzing the relationship between the dependent variable and a set of explanatory variables. From this relationship the values of variables are predicted. In this paper the multiple linear regression model and three covariates were studied in the presence of the problem of auto-correlation of errors when the random error distributed the distribution of exponential. Three methods were compared (general least squares, M robust, and Laplace robust method). We have employed the simulation studies and calculated the statistical standard mean squares error with sample sizes (15, 30, 60, 100). Further we applied the best method on the real experiment data representing the varieties of
... Show MoreHas been studied both processes Almetzaz and extortion of a substance Alklanda Maysan different amounts of Alcaúlan Guy 70% alcohol solution using the method when the wavelength
Self-Assertion is the individual ability to express any emotion well, except the anxiety. The decrease of the individuals asserting behavior makes them face many difficulties that prevent their social adjustment. Moreover it reflexes many negative behavioral and physical cases. The individual, who fails to express his or her negative feelings in required situations, feels with dissatisfaction, loneliness, depression, anxiety, social anxiety, conflict, and psychological disorder.
Accordingly, the importance of this study is represented in studying the self-assertion and studying the university students who reflect the strength of society.
The following are the two aims of the study:
1. Construct an asserting behavior scale.
2.
The Planning and Resource Development Department of the Iraqi Ministry of Health is very interested in improving medical care, health education, and village training programs. Accordingly, and through the available capabilities of the ministry, itdesires to allocate seven health centers to four villages in Baghdad, Iraq therefore the ministry needs to determine the number of health centers allocated to each of these villages which achieves the greatest degree of the overall effectiveness of the seven health centers in a fuzzy environment. The objective of this study is to use a fuzzy dynamic programming(DP) method to determine the optimal allocation of these centers, which allows the greatest overall effectiveness of these health centers
... Show MoreThe aim of the research was to investigate the use of non-parametric tests in the analysis of the questionnaire and how to choose the appropriate test for testing the hypothesis of the study of crime motives in Khartoum State. The data were collected through the primary sources by designing a questionnaire and distributed to a sample of inmates in Khartoum state; the data were analysis by SPSS program using the analytical statistical method through using some of the suitable non-parametric tests for each case. The most important results of the research were: there was significant relationship between the type of crime and the age group therefore, we found that the age group (20-29) was the most frequent crime particularly, the fi
... Show More