Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.
يسعى البحث إلى الاهتمام بإحدى الوظائف المهمة في إدارة الموارد البشرية وهي تقويم الأداء التي تواجه مجموعة من الانتقادات والآراء السلبية، اذ ظهر في الأّونة الأخيرة أنموذج جديد يمكن إن يتجاوز تلك السلبيات وهو أنموذج التغذية العكسية المتعدد المصادر درجة .وقد حاول الباحثان توظيف هذا المفهوم في اثنتين من المنظمات العامة العراقية هما (دائرة كهرباء الوسط) التابعة لوزارة الكهرباء
و (دائرة الماء والمجاري) ال
Purpose: The diagnosis and determine the level of balance between the time available for life and work with the doctors in the hospitals of t the six hospitals in the City of Medicine.
Design / methodology / Approach: It has been relying on ready-scale, to make sure the diagnosis and determine the level of balance between the time available for life and work, where they were distributed on Form 42 doctors in the six hospitals in the City of Medicine, were analyzed by software (Nvivo and SPSS v.22).
Results: The results showed that there is a good level of balance between the time available for life and work with the doctors.
Research limitations: The diffi
... Show MoreA genetic algorithm model coupled with artificial neural network model was developed to find the optimal values of upstream, downstream cutoff lengths, length of floor and length of downstream protection required for a hydraulic structure. These were obtained for a given maximum difference head, depth of impervious layer and degree of anisotropy. The objective function to be minimized was the cost function with relative cost coefficients for the different dimensions obtained. Constraints used were those that satisfy a factor of safety of 2 against uplift pressure failure and 3 against piping failure.
Different cases reaching 1200 were modeled and analyzed using geo-studio modeling, with different values of input variables. The soil wa
A substantial matter to confidential messages' interchange through the internet is transmission of information safely. For example, digital products' consumers and producers are keen for knowing those products are genuine and must be distinguished from worthless products. Encryption's science can be defined as the technique to embed the data in an images file, audio or videos in a style which should be met the safety requirements. Steganography is a portion of data concealment science that aiming to be reached a coveted security scale in the interchange of private not clear commercial and military data. This research offers a novel technique for steganography based on hiding data inside the clusters that resulted from fuzzy clustering. T
... Show MoreThis paper presents a parametric audio compression scheme intended for scalable audio coding applications, and is particularly well suited for operation at low rates, in the vicinity of 5 to 32 Kbps. The model consists of two complementary components: Sines plus Noise (SN). The principal component of the system is an. overlap-add analysis-by-synthesis sinusoidal model based on conjugate matching pursuits. Perceptual information about human hearing is explicitly included into the model by psychoacoustically weighting the pursuit metric. Once analyzed, SN parameters are efficiently quantized and coded. Our informal listening tests demonstrated that our coder gave competitive performance to the-state-of-the- art HelixTM Producer Plus 9 from
... Show MorePure and doped TiO 2 with Bi films are obtained by pulse laser deposition technique at RT under vacume 10-3 mbar, and the influence of Bi content on the photocvoltaic properties of TiO 2 hetrojunctions is studied. All the films display photovoltaic in the near visible region. A broad double peaks are observed around λ= 300nm for pure TiO 2 at RT in the spectral response of the photocurrent, which corresponds approximately to the absorption edge and this peak shift to higher wavelength (600 nm) when Bi content increase by 7% then decrease by 9%. The result is confirmed with the decreasing of the energy gap in optical properties. Also, the increasing is due to an increase in the amount of Bi content, and shifted to 400nm when annealed at 523
... Show MoreThe objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust a
... Show MoreMost recent studies have focused on using modern intelligent techniques spatially, such as those
developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern
artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the
ability to learn and recognize what they had learned. The importance of developing such systems came after
the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This
would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder
detection module depending on Multi-Connect Architecture Associative Memory (MCA)