This study evaluated the influence of administering different levels of L-arginine into the eggs of 0-day-old Japanese quail embryos. On day 0 of incubation, 480 eggs (120 for each treatment group) were injected with 0% arginine (C group), 1% arginine (T1), 2% arginine (T2), or 3% arginine (T3). After hatching, 336 quail chicks (84 chicks produced from each ovo injection treatment) were placed in an experimental quail house and allocated to four treatment groups of three replicates, with 16 quail chicks for each replicate. Traits involved in this study were hatchability rate, initial body weight (7 days of age), final body weight (42 days old), feed intake, weight gain, feed conversion ratio, blood serum glucose, protein, cholesterol, total lipids, triglycerides, calcium, and phosphorus concentrations, and proportional weights of the carcass, breast, legs, backbone, wings, neck, abdominal fat, liver, heart, and gizzard. Results revealed that in ovo injection with different levels of L-arginine on day 0 of incubation, there were significant increases in the hatchability rate, initial body weight, final body weight, feed conversion ratio, blood serum glucose, protein, total protein, calcium, and phosphorus concentrations, as well as the proportional weights of the carcass, breast, legs, liver, heart, and gizzard. However, there was no significant difference in feed intake between treatment groups. Significant decreases were recorded in blood serum cholesterol, total lipid and triglyceride concentrations, and proportional weights of the backbone, wings, and abdominal fat. In conclusion, the inoculation of different levels of L-arginine into the eggs of 0-day-old quail embryos, especially at levels of 2% and 3% arginine, resulted in a significant improvement in the productive and physiological performance of the quail. Hence, ovo injection with L-arginine could be used as a tool for enhancing the hatchability rate and productive performance of quail hatched from the egg.
Porous silicon (PS) layers were formed on n-type silicon (Si) wafers using Photo- electrochemical Etching technique (PEC) was used to produce porous silicon for n-type with orientation of (111). The effects of current density were investigated at: (10, 20, 30, 40, and50) mA/cm2 with etching time: 10min. X-ray diffraction studies showed distinct variations between the fresh silicon surface and the synthesized porous silicon. The maximum crystal size of Porous Silicon is (33.9nm) and minimum is (2.6nm) The Atomic force microscopy (AFM) analysis and Field Emission Scanning Electron Microscope (FESEM) were used to study the morphology of porous silicon layer. AFM results showed that root mean square (RMS) of roughness and the grain size of p
... Show MoreIn recent years, nano-modified asphalt has gained significant attraction from researchers in the design of asphalt pavement fields. The recently discovered Titanium dioxide nanoparticles (TiO2) are among the most exciting and promising nanomaterials. This study examines the effect of 1, 3, 5, and 7% of nano-TiO2 by weight of asphalt on some of its rheological and hardened properties. The experimental study included physical and rheological properties. The asphalt penetration, softening point, ductility, and rotational viscometer tests indicate that 5% nano-TiO2 is the ideal amount to be added to bitumen as a modifier. The
An investigation was conducted for the improvement of viscosity index of light lubricating oil fraction (40 stock)
obtained from vacuum distillation unit of lube oil plant of Daura Refinery, using solvent extraction process.
In this study furfural solvent was used to extract the undesirable materials which reduce the viscosity index of raw
lubricating oil fraction.
The studied effecting variables of extraction were extraction temperature range from 70 to 110°C, and solvent to oil
ratio range from 1:1 to 4:1 (wt/wt).
The n-d-M method was used for calculation of carbon distribution and structural group analysis of the raffinate
produced from furfural extraction.
Also the three component phase diagram for a mixed-ba
In this study, Laser Shock Peening (LSP) effect on the polymeric composite materials has been investigated experimentally. Polymeric composite materials are widely used because they are easy to fabricate and have many attractive features. Unsaturated polyester resin as a matrix was selected and Aluminum powder with micro particles as a reinforcement material was used with different volume fraction (2.5%, 5% and 7.5%). Hand lay-up process was used for preparation the composites. Fatigue test with constant amplitude with stress ratio (R =-1) was carried out before and after LSP process with two levels of energy (1Joule and 2Joule). The result showed an increase in the endurance strength of 25.448% at 7.5% volume fraction when peened is 1J
... Show MoreThe physical, the thermal and the mechanical properties of Nano-composites, that consisted of Polyprime EP epoxy that reinforced by multi-walled carbon nanotubes (MWCNTs), have been studied. Various loading ratios, 0.1, 0.5, and 1 wt. %of MWCNT shave been infused into epoxy by a magnetic stirrer and then the hardener mixed with the mthat supplied with the epoxy. All sample shave been cutting using CNC machine. Tensile test, three-point bending, hardness tests, lee's disk, differential scanning calorimetry, water absorption and dielectric and electrical conductivity test were utilized on unfilled, MWCNT-filled epoxy to identify the loading effect on the properties of materials. Scanning electron microscopy (SEM) was used to determine the
... Show MoreThis article examines and proposes a dietary chain model with a prey shelter and alternative food sources. It is anticipated that mid-predators' availability is positively correlated with the number of refuges. The solution's existence and exclusivity are examined. It is established that the solution is bounded. It is explored whether all potential equilibrium points exist and are locally stable. The Lyapunov approach is used to investigate the equilibrium points' worldwide stability. Utilizing a Sotomayor theorem application, local bifurcation is studied. Numerical simulation is used to better comprehend the dynamics of the model and define the control set of parameters.
Proteus mirabilis is considered as a third common cause of catheter-associated urinary tract infection, with urease production, the potency of catheter blockage due to the formation of biofilm formation is significantly enhanced. Biofilms are major virulence factors expressed by pathogenic bacteria to resist antibiotics; in this concern the need for providing new alternatives for antibiotics is getting urgent need, This study aimed to explore whether green synthesized zinc oxide nanoparticles (ZnO NPs) can function as an anti-biofilm agent produced by P.mirabilis. Bacterial cells were capable of catalyzing the biosynthesis process by producing reductive enzymes. The nanoparticles were synthesized from cell free
... Show MoreResults showed high efficiency of the predator Chrysoperla carnea (Stephens) to attack and consume nymphal instars and adults of cabbage aphid, Brevicoryne brassicae (L.).The total average of the nymphal instars consumed by the larval stage of predator were 308.67, 285.9, 198.77, 154.7 for 1st ,2nd ,3rd ,4th nymphal instars respectively .While it was 110,107.9 for apterae and alatae respectively . Also, predation efficiency increases with the progress of the larval instars up to the third (last) which was the most voracious .The 1st instar nymph consumed by the larvae of the predator were 47,80,181.67 nymphs ,with predation rate of 14.71% , 23.75% and 50.13% for 1st ,2nd and 3rd larval instars