Preferred Language
Articles
/
XRbZlocBVTCNdQwCs1fL
An intersection-based segment aware algorithm for geographic routing in VANETs
...Show More Authors

In networking communication systems like vehicular ad hoc networks, the high vehicular mobility leads to rapid shifts in vehicle densities, incoherence in inter-vehicle communications, and challenges for routing algorithms. It is necessary that the routing algorithm avoids transmitting the pockets via segments where the network density is low and the scale of network disconnections is high as this could lead to packet loss, interruptions and increased communication overhead in route recovery. Hence, attention needs to be paid to both segment status and traffic. The aim of this paper is to present an intersection-based segment aware algorithm for geographic routing in vehicular ad hoc networks. This algorithm makes available the best route for the transmission of the packets of data in the direction of their destination by taking into consideration the status of the traffic segment when selecting the next intersection. Through this algorithm, a new formula for assessing the status of the segment is presented based on three elements: density, connectivity, and distance. To evaluate this routing algorithm, simulations are performed, once the results are obtained, they are compared with the existing routing algorithms. The evaluation of results offered evidence that our routing algorithm did well in terms of packet delivery ratio and packet delivery delay.

Scopus Crossref
View Publication
Publication Date
Sun Jan 08 2023
Journal Name
Journal Of Planner And Development
Statistical Evaluation of the Planning Process and Scheduling Management for Irrigation and Drainage Projects in the Republic of Iraq
...Show More Authors

The Research aims to investigate into reality in terms of planning and scheduling management process for sake the implementation and maintenance of irrigation and drainage projects in the Republic of Iraq, with an indication of the most important obstacles that impede the planning and scheduling management process for these projects and ways of addressing them and minimizing their effects.                                                  For the purpose of achieving the goal of the research, a sci

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
Effects of Macroeconomic Variables on Gross Domestic Product in Saudi Arabia using ARDL model for the period 1993-2019
...Show More Authors

 

This paper analyses the relationship between selected macroeconomic variables and gross domestic product (GDP) in Saudi Arabia for the period 1993-2019. Specifically, it measures the effects of interest rate, oil price, inflation rate, budget deficit and money supply on the GDP of Saudi Arabia. The method employs in this paper is based on a descriptive analysis approach and ARDL model through the Bounds testing approach to cointegration. The results of the research reveal that the budget deficit, oil price and money supply have positive significant effects on GDP, while other variables have no effects on GDP and turned out to be insignificant. The findings suggest that both fiscal and monetary policies should be fo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A Suggested Model for Using a Students Attendance Management Information Systems/ A Case Study In Lebanese French University/ Erbil
...Show More Authors

This study aims to design unified  electronic information system to manage students attendance in Lebanese French university/Erbil, as a system that simplifies the process of entering and counting the students absence, and generate absence reports to expel students who passed  the acceptable limit of being absent, and by that we can replace the traditional way of  using papers to count absence,  with  a complete electronically system for managing students attendance, in a way that makes the results accurate and unchangeable by the students.

            In order to achieve the study's objectives, we designed an information syst

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 28 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Nitric Oxide, Peroxynitrite and Malondialdehyde Levels as Markers for Nitrosative/Oxidative Stress in Iraqi Patients with Systemic Lupus Erythematosus
...Show More Authors

Systemic lupus Erythematosus is an autoimmune disease of unknown aetiology affecting multiple organ system. Reactive nitrogen and oxygen species are claimed to play a role in this disease. However, the potential of Nitrosative/Oxidative Stress to elicit an autoimmune, response remain till now largely unexplored in humans. This study was done to investigate the status and contribution of nitrosative/oxidative stress in Iraqi patients for systemic lupus erythematosus. Blood samples from 19 patients with systemic lupus erythematosus and 19 age-and sex- matched apparently healthy controls were evaluated for serum levels of nitrosative/oxidative stress markers including nitric oxide, peroxynitrite and malondialdehyde. Nitric oxide levels were

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
A Posteriori L_∞ (L_2 )+L_2 (H^1 )–Error Bounds in Discontinuous Galerkin Methods For Semidiscrete Semilinear Parabolic Interface Problems
...Show More Authors

The aim of this paper is to derive a posteriori error estimates for semilinear parabolic interface problems. More specifically, optimal order a posteriori error analysis in the - norm for semidiscrete semilinear parabolic interface problems is derived by using elliptic reconstruction technique introduced by Makridakis and Nochetto in (2003). A key idea for this technique is the use of error estimators derived for elliptic interface problems to obtain parabolic estimators that are of optimal order in space and time.

View Publication Preview PDF
Scopus (12)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Corporate & Business Strategy Review
Analysis of the accounting financial performance of private listed banks in the emerging market for the period 2010–2022
...Show More Authors

This study aims to the little impact of accounting financial performance (AFP) analysis on the money market in the Iraqi economy. Potentially limiting future market activity could be international risks and obstacles, which in turn could cause issues and crises (Shah & Jan, 2014; Bakhtiyarovich, 2020)‏. The study concept was inspired by the recognition that there must be communication between the importance of the AFP analysis of the Iraqi securities market and the country’s financial and economic institutions. The sample of the study included ten Iraqi banks listed in the Iraq Stock Exchange (ISE) for the period 2010–2020. The three mathematical models included in the statistical analysis served as the basis for projectin

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (5)
Scopus Crossref
Publication Date
Mon Sep 01 2025
Journal Name
Thermal Science And Engineering Progress
Active mixing strategies for energy-efficient water dispensers: Comparative experimental study of impeller and bubble injection in hot climates
...Show More Authors

View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Deep Learning Techniques in the Cancer-Related Medical Domain: A Transfer Deep Learning Ensemble Model for Lung Cancer Prediction
...Show More Authors

Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (7)
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Applied Energy
Deep clustering of Lagrangian trajectory for multi-task learning to energy saving in intelligent buildings using cooperative multi-agent
...Show More Authors

The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is

... Show More
View Publication
Scopus (31)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Swarm And Evolutionary Computation
A review of heuristics and metaheuristics for community detection in complex networks: Current usage, emerging development and future directions
...Show More Authors

Sensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte

... Show More
Scopus (70)
Crossref (51)
Scopus Clarivate Crossref