Preferred Language
Articles
/
XRbFvYoBVTCNdQwCj6Qw
Four Char DNA Encoding for Anomaly Intrusion Detection System
...Show More Authors

Recent research has shown that a Deoxyribonucleic Acid (DNA) has ability to be used to discover diseases in human body as its function can be used for an intrusion-detection system (IDS) to detect attacks against computer system and networks traffics. Three main factor influenced the accuracy of IDS based on DNA sequence, which is DNA encoding method, STR keys and classification method to classify the correctness of proposed method. The pioneer idea on attempt a DNA sequence for intrusion detection system is using a normal signature sequence with alignment threshold value, later used DNA encoding based cryptography, however the detection rate result is very low. Since the network traffic consists of 41 attributes, therefore we proposed the most possible less character number (same DNA length) which is four-character DNA encoding that represented all 41 attributes known as DEM4all. The experiments conducted using standard data KDDCup 99 and NSL-KDD. Teiresias algorithm is used to extract Short Tandem Repeat (STR), which includes both keys and their positions in the network traffic, while Brute-force algorithm is used as a classification process to determine whether the network traffic is attack or normal. Experiment run 30 times for each DNA encoding method. The experiment result shows that proposed method has performed better accuracy (15% improved) compare with previous and state of the art DNA algorithms. With such results it can be concluded that the proposed DEM4all DNA encoding method is a good method that can used for IDS. More complex encoding can be proposed that able reducing less number of DNA sequence can possible produce more detection accuracy.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (32)
Crossref (22)
Scopus Crossref
Publication Date
Wed Jul 10 2024
Journal Name
The Open Neuroimaging Journal
The Efficacy of Bedside Chest Ultrasound in the Detection of Traumatic Pneumothorax
...Show More Authors
Background

Chest X-rays have long been used to diagnose pneumothorax. In trauma patients, chest ultrasonography combined with chest CT may be a safer, faster, and more accurate approach. This could lead to better and quicker management of traumatic pneumothorax, as well as enhanced patient safety and clinical results.

Aim

The purpose of this study was to assess the efficacy and utility of bedside US chest in identifying traumatic pneumothorax and also its capacity to estimate the extent of the lesion in comparison to the gold standard modality chest computed tomography.

... Show More
View Publication
Scopus (5)
Crossref (6)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Fast Shot Boundary Detection Based on Separable Moments and Support Vector Machine
...Show More Authors

View Publication
Scopus (27)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
View Publication
Scopus (27)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Thu Jan 12 2023
Journal Name
Journal Of The Saudi Society Of Agricultural Sciences
Effect of planting density, foliar spraying and overlapping system on the growth and productivity using soilless culture system
...Show More Authors

Scopus (5)
Scopus
Publication Date
Sat Dec 31 2016
Journal Name
Al-kindy College Medical Journal
A Comparison of Sagittal Sections of Short T1inversion Recovery and T2 Weighted Fast Spin Echo Magnetic Resonance Sequences for Detection of Multiple Sclerosis Spinal Cord Lesions
...Show More Authors

Background: Multiple sclerosis is a chronic autoimmune inflammatory demyelinating disease of the central nervous system of unknown etiology. Different techniques and magnetic resonance image sequences are widely used and compared to each other to improve the detection of multiple sclerosis lesions in the spinal cord. Objective: To evaluate the ability of MRI short tau inversion recovery sequences in improvementof multiple sclerosis spinal cord lesion detection when compared to T2 weighted image sequences. Type of the study: A retrospective study. Methods: this study conducted from 15thAugust 2013 to 30thJune 2014 at Baghdad teaching hospital. 22 clinically definite MS patients with clinical features suggestive of spinal cord involvement,

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 23 2025
Journal Name
Baghdad Science Journal
New Mode for 4 mm Path Irradiation and One Side Detection at 0–180° for Cu (II)ion Determination in Different Samples using On-Line Continuous Flow Feed and Simplified, Sensitive, and Portable Photometer
...Show More Authors

View Publication
Crossref
Publication Date
Wed Feb 22 2017
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
DETECTION OF ENTEROTOXINS OF Staphylococcus aureus IN MILK AND LOCOLLY SOFT CHEESES IN BAGHDAD CITY: DETECTION OF ENTEROTOXINS OF Staphylococcus aureus IN MILK AND LOCOLLY SOFT CHEESES IN BAGHDAD CITY
...Show More Authors

This study aimed to detect of contamination of milk and local soft cheese with Staphylococcus aureus and their enterotoxins with attempt to detect the enterotoxin genes in some isolates of this bacteria. A total of 120 samples, 76 of raw milk and 44 of soft cheese were collected from different markets of Baghdad city. Enterotoxins in these samples were detected by VIDAS Set 2 system and it was found that enterotoxin A is present in a rate of 44.74% in milk samples and in a rate 54.50% in cheese samples. While other enterotoxins B, C, D, E were not found in any rate in any samples.
Through the study 60 isolates obtained from milk and cheeses were identified as Staphylococcus aureus by cultural, morphological and biochemical test by u

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of a Programmable System for Failure Modes and Effect Analysis of Steam-Power Plant Based on the Fault Tree Analysis
...Show More Authors

In this paper, the system of the power plant has been investigated as a special type of industrial systems, which has a significant role in improving societies since the electrical energy has entered all kinds of industries, and it is considered as the artery of modern life.

   The aim of this research is to construct a programming system, which could be used to identify the most important failure modes that are occur in a steam type of power plants. Also the effects and reasons of each failure mode could be analyzed through the usage of this programming system reaching to the basic events (main reasons) that causing each failure mode. The construction of this system for FMEA is dependi

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2013
Journal Name
Uob
Effect of Irrigation Levels and Organic Matter in The Growth, Yield and its Quality for Chilli Pepper Under Organic Farming System
...Show More Authors