Recent research has shown that a Deoxyribonucleic Acid (DNA) has ability to be used to discover diseases in human body as its function can be used for an intrusion-detection system (IDS) to detect attacks against computer system and networks traffics. Three main factor influenced the accuracy of IDS based on DNA sequence, which is DNA encoding method, STR keys and classification method to classify the correctness of proposed method. The pioneer idea on attempt a DNA sequence for intrusion detection system is using a normal signature sequence with alignment threshold value, later used DNA encoding based cryptography, however the detection rate result is very low. Since the network traffic consists of 41 attributes, therefore we proposed the most possible less character number (same DNA length) which is four-character DNA encoding that represented all 41 attributes known as DEM4all. The experiments conducted using standard data KDDCup 99 and NSL-KDD. Teiresias algorithm is used to extract Short Tandem Repeat (STR), which includes both keys and their positions in the network traffic, while Brute-force algorithm is used as a classification process to determine whether the network traffic is attack or normal. Experiment run 30 times for each DNA encoding method. The experiment result shows that proposed method has performed better accuracy (15% improved) compare with previous and state of the art DNA algorithms. With such results it can be concluded that the proposed DEM4all DNA encoding method is a good method that can used for IDS. More complex encoding can be proposed that able reducing less number of DNA sequence can possible produce more detection accuracy.
The main aim of image compression is to reduce the its size to be able for transforming and storage, therefore many methods appeared to compress the image, one of these methods is "Multilayer Perceptron ". Multilayer Perceptron (MLP) method which is artificial neural network based on the Back-Propagation algorithm for compressing the image. In case this algorithm depends upon the number of neurons in the hidden layer only the above mentioned will not be quite enough to reach the desired results, then we have to take into consideration the standards which the compression process depend on to get the best results. We have trained a group of TIFF images with the size of (256*256) in our research, compressed them by using MLP for each
... Show MoreThe extracting of personal sprite from the whole image faced many problems in separating the sprite edge from the unneeded parts, some image software try to automate this process, but usually they couldn't find the edge or have false result. In this paper, the authors have made an enhancement on the use of Canny edge detection to locate the sprite from the whole image by adding some enhancement steps by using MATLAB. Moreover, remove all the non-relevant information from the image by selecting only the sprite and place it in a transparent background. The results of comparing the Canny edge detection with the proposed method shows improvement in the edge detection.
In this study, He's parallel numerical algorithm by neural network is applied to type of integration of fractional equations is Abel’s integral equations of the 1st and 2nd kinds. Using a Levenberge – Marquaradt training algorithm as a tool to train the network. To show the efficiency of the method, some type of Abel’s integral equations is solved as numerical examples. Numerical results show that the new method is very efficient problems with high accuracy.
An automatic text summarization system mimics how humans summarize by picking the most significant sentences in a source text. However, the complexities of the Arabic language have become challenging to obtain information quickly and effectively. The main disadvantage of the traditional approaches is that they are strictly constrained (especially for the Arabic language) by the accuracy of sentence feature functions, weighting schemes, and similarity calculations. On the other hand, the meta-heuristic search approaches have a feature tha
... Show MoreScheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating opti
... Show MoreThe need for information web-searching is needed by many users nowadays. They use the search engines to input their query or question and wait for the answer or best search results. As results to user query the search engines many times may be return irrelevant pages or not related to information need. This paper presents a proposed model to provide the user with efficient and effective result through search engine, based on modified chicken swarm algorithm and cosine similarity to eliminate and delete irrelevant pages(outliers) from the ranked list results, and to improve the results of the user's query . The proposed model is applied to Arabic dataset and use the ZAD corpus dataset for 27
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
Medical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons.
... Show Moreمفهوم معامل الارتباط كمقياس يربط بين متغيرين هذا يجلب انتباهنا إلى موضوع الإحصاء في كل المستويات. أكثر من ذلك هناك ثلاث نقاط خاصة هي اعتيادياً نشدد عليها كما يأتي:-
(1 معامل الارتباط هو الدليل المعياري والذي قيمته لا تعتمد على قياسات
المتغيرات الأصلية.
(2قيمته تقع في المدى] 1,1-[ .
&nb
... Show MoreAbstract
In this study, we compare between the autoregressive approximations (Yule-Walker equations, Least Squares , Least Squares ( forward- backword ) and Burg’s (Geometric and Harmonic ) methods, to determine the optimal approximation to the time series generated from the first - order moving Average non-invertible process, and fractionally - integrated noise process, with several values for d (d=0.15,0.25,0.35,0.45) for different sample sizes (small,median,large)for two processes . We depend on figure of merit function which proposed by author Shibata in 1980, to determine the theoretical optimal order according to min
... Show More