Preferred Language
Articles
/
XRZaU4cBVTCNdQwC6UWh
Unsteady nonlinear panel method with mixed boundary conditions
...Show More Authors

A new panel method had been developed to account for unsteady nonlinear subsonic flow. Two boundary conditions were used to solve the potential flow about complex configurations of airplanes. Dirichlet boundary condition and Neumann formulation are frequently applied to the configurations that have thick and thin surfaces respectively. Mixed boundary conditions were used in the present work to simulate the connection between thick fuselage and thin wing surfaces. The matrix of linear equations was solved every time step in a marching technique with Kelvin's theorem for the unsteady wake modeling. To make the method closer to the experimental data, a Nonlinear stripe theory which is based on a two-dimensional viscous-inviscid interaction method for each station along the wing spanwise direction and Prandtle-Glauert rule for compressibility effect were used to enhance the potential results of the method. The fast turnaround time and the ability to model arbitrary geometries is the goal of the present work. Different airplanes configurations were simulated (DLR-F4, light jet, cargo and four engine commercial airplanes). The results of pressure and forces coefficients were compared with the DLR-F4 airplane. The comparisons showed a satisfying agreement with the experimental data. The method is simple and fast as compared with other singularity methods, which may be dependent as a preliminary method to design aircrafts.

Scopus Clarivate Crossref
View Publication
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Using the Elzaki decomposition method to solve nonlinear fractional differential equations with the Caputo-Fabrizio fractional operator
...Show More Authors

The techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Tue Jan 02 2018
Journal Name
Arab Journal Of Basic And Applied Sciences
Daftardar-Jafari method for solving nonlinear thin film flow problem
...Show More Authors

View Publication
Crossref (15)
Crossref
Publication Date
Wed Mar 01 2017
Journal Name
Archive Of Mechanical Engineering
Using the Lid-Driven Cavity Flow to Validate Moment-Based Boundary Conditions for the Lattice Boltzmann Equation
...Show More Authors
Abstract<p>The accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.</p>
View Publication
Scopus (20)
Crossref (17)
Scopus Crossref
Publication Date
Wed Aug 01 2018
Journal Name
International Journal Of Novel Research In Electrical And Mechanical Engineering
Use of Panel Method in High Subsonic and Transonic Aerodynamic Analysis of Complex Aircraft Configuration
...Show More Authors

The application of low order panel method with the Dirichlet boundary condition on complex aircraft configuration have been studied in high subsonic and transonic speeds. Low order panel method has been used to solve the case of the steady, inviscid and compressible flow on a forward swept wing – canard configuration with cylindrical fuselage and a vertical stabilizer with symmetrical cross section. The aerodynamic coefficients for the forward swept wing aircraft were calculated using measured wake shape from an experimental work on same model configuration. The study showed that the application of low order panel method can be used with acceptable results

View Publication
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Nonlinear Second Order Delay Eigenvalue Problems by Least Square Method
...Show More Authors

     The aim of this paper is to study the nonlinear delay second order eigenvalue problems which consists of delay ordinary differential equations, in fact one of the expansion methods that is called the least square method which will be developed to solve this kind of problems.

View Publication Preview PDF
Crossref
Publication Date
Sun Jun 07 2015
Journal Name
Baghdad Science Journal
Direct method for Solving Nonlinear Variational Problems by Using Hermite Wavelets
...Show More Authors

In this work, we first construct Hermite wavelets on the interval [0,1) with it’s product, Operational matrix of integration 2^k M×2^k M is derived, and used it for solving nonlinear Variational problems with reduced it to a system of algebric equations and aid of direct method. Finally, some examples are given to illustrate the efficiency and performance of presented method.

View Publication Preview PDF
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Heun Method Using to Solve System of NonLinear Functional Differential Equations
...Show More Authors

In this paper Heun method has been used to find numerical solution for first order nonlinear functional differential equation. Moreover, this method has been modified in order to treat system of nonlinear functional differential equations .two numerical examples are given for conciliated the results of this method.

View Publication Preview PDF
Crossref
Publication Date
Thu Oct 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Iterative Method for Solving a Nonlinear Fourth Order Integro-Differential Equation
...Show More Authors

This study presents the execution of an iterative technique suggested by Temimi and Ansari (TA) method to approximate solutions to a boundary value problem of a 4th-order nonlinear integro-differential equation (4th-ONIDE) of the type Kirchhoff which appears in the study of transverse vibration of hinged shafts. This problem is difficult to solve because there is a non-linear term under the integral sign, however, a number of authors have suggested iterative methods for solving this type of equation. The solution is obtained as a series that merges with the exact solution. Two examples are solved by TA method, the results showed that the proposed technique was effective, accurate, and reliable. Also, for greater reliability, the approxim

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Nonlinear COVID-19 Mathematical Model Using a Reliable Numerical Method
...Show More Authors

This research aims to numerically solve a nonlinear initial value problem presented as a system of ordinary differential equations. Our focus is on epidemiological systems in particular. The accurate numerical method that is the Runge-Kutta method of order four has been used to solve this problem that is represented in the epidemic model. The COVID-19 mathematical epidemic model in Iraq from 2020 to the next years is the application under study. Finally, the results obtained for the COVID-19 model have been discussed tabular and graphically. The spread of the COVID-19 pandemic can be observed via the behavior of the different stages of the model that approximates the behavior of actual the COVID-19 epidemic in Iraq. In our study, the COV

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jul 01 2013
Journal Name
Journal Of Kerbala University
study the optimum conditions of synthesis AgNP by chemical reduction method
...Show More Authors

Abstract :- In this paper, silver nanoparticles had been prepared by chemical reduction method. Many tests had been done to it such as UV-Visible spectrophotometer, XRD, AFM&SEM test. finally an attempt had been done to get the optimum condition to control the grain size of silver Nanoparticles by variation the heating period and other parameters which has an effect in silver Nanoparticles synthesis process. in this method we can get a silver nanoparticles in the size range from 52 to 97 nm.

Preview PDF