We discussed the proper preparation, directing, and implementation of physical education lessons, and clarification of the duties that fall upon the physical education teacher in addition to his physical and skill duties, which is the duty of the physical education lesson. The problem of the research lies in the fact that interactive harmonic exercises are not implemented accurately by physical education teachers because they require great experience, exceptional efforts, and accuracy in performance. The research aims to identify the level of some physical and motor abilities and intelligence among students aged (9-10) years, and to know the effect of some harmonic exercises. Interactivity at the level of some physical and motor abilities and the level of intelligence among students aged (9-10) years. As for the research hypotheses, they are that there are no statistically significant differences between the pre- and post-tests of the control and experimental groups in some physical and motor abilities and intelligence among students aged (9-10) years, and the absence of statistically significant differences in the post-tests between the control and experimental groups in some physical and motor abilities and intelligence among students aged (9-10) years. . The experimental approach was used, and the research population was identified with the students of the Lebanon Mixed Primary School of the Second Rusafa Education Directorate in Baghdad Governorate for the academic year 2023-2024 AD, aged (9-10) years, numbering (30) students. They were divided into a control group, numbering (15) students, and an experimental group, numbering (15) students. (6) students were identified as a sample for the exploratory experiment, and the study was applied. (5) tests to measure physical and motor abilities and one test to measure the level of intelligence. After processing and discussing the data, the researchers concluded that the use of interactive harmonious exercises within a physical education lesson has a positive impact on the variables of the study, as the results showed that there were statistically significant differences between the pre- and post-measurements of the experimental group and in favor of the post-measurement in all tests of physical and motor abilities and in the intelligence level of the students, and that the use of traditional teaching methods showed the presence of There were statistically significant differences between the pre- and post-measurements of the control group in all variables of the study except for the two tests (successive jumps in place for 10 seconds, and the Raven’s intelligence test), which indicates the presence of some kind of defect and shortcomings in some components of the traditional teaching curriculum.
Piperine, a crystalline alkaloid compound isolated from Piper nigrum, piper longum, and other types of piper, has had many fabulous pharmacological advantages for preventing and treating some specific diseases, such as analgesic, anti-inflammatory, hepatoprotective, antimetastatic, antithyroid, immunomodulatory, antitumor, rheumatoid arthritis, osteoarthritis, Alzheimer's, and improving the bioavailability of other drugs. However, its potential for clinical use through oral usage is hindered by water solubility and poor bioavailability. The low level of oral bioavailability is caused by low solubility in water and is photosensitive, susceptible to isomerization by UV light, which causes piperine concentration to decrease. Many different
... Show MoreThis study is aimed to Green-synthesize and characterize Al NPs from Clove (Syzygium aromaticum
L.) buds plant extract and to investigate their effect on isolated and characterized Salmonella enterica growth.
S. aromaticum buds aqueous extract was prepared from local market clove, then mixed with Aluminum nitrate
Al(NO3)3. 9 H2O, 99.9% in ¼ ratio for green-synthesizing of Al NPs. Color change was a primary confirmation
of Al NPs biosynthesis. The biosynthesized nanoparticles were identified and characterized by AFM, SEM,
EDX and UV–Visible spectrophotometer. AFM data recorded 122nm particles size and the surface roughness
RMs) of the pure S. aromaticum buds aqueous extract recorded 17.5nm particles s
In this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.
Fiber Reinforced Polymer (FRP) bars are anisotropic in nature and have high tensile strength in the fiber direction. The use of High-Strength Concrete (HSC) allows for better use of the high-strength properties of FRP bars. The mechanical properties of FRP bars can yield to large crack widths and deflections. As a result, the design of concrete elements reinforced with FRP materials is often governed by the Serviceability Limit States (SLS). This study investigates the short-term serviceability behavior of FRP RC I-beams. Eight RC I-beams reinforced with carbon-FRP (CFRP) and four steel RC I-beams, for comparison purposes, were tested under two-point loading.
Deformations on the concrete and crack widths and spacing are measured and
In this paper, the dynamic behaviour of the stage-structure prey-predator fractional-order derivative system is considered and discussed. In this model, the Crowley–Martin functional response describes the interaction between mature preys with a predator. e existence, uniqueness, non-negativity, and the boundedness of solutions are proved. All possible equilibrium points of this system are investigated. e sucient conditions of local stability of equilibrium points for the considered system are determined. Finally, numerical simulation results are carried out to conrm the theoretical results.
There is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP
... Show MoreThe present study focuses on synthesizing solar selective absorber thin films, combining nanostructured, binary transition metal spinel features and a composite oxide of Co and Ni. Single-layered designs of crystalline spinel-type oxides using a facile, easy and relatively cost-effective wet chemical spray pyrolysis method were prepared with a crystalline structure of MxCo3−xO4. The role of the annealing temperature on the solar selective performance of nickel-cobalt oxide thin films (∼725 ± 20 nm thick) was investigated. XRD analysis confirmed the formation of high crystalline quality thin films with a crystallite si
Throughout this paper, a generic iteration algorithm for a finite family of total asymptotically quasi-nonexpansive maps in uniformly convex Banach space is suggested. As well as weak / strong convergence theorems of this algorithm to a common fixed point are established. Finally, illustrative numerical example by using Matlab is presented.
In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show More