The current study performs an explicit nonlinear finite element simulation to predict temperature distribution and consequent stresses during the friction stir welding (FSW) of AA 7075-T651 alloy. The ABAQUS® finite element software was used to model and analyze the process steps that involve plunging, dwelling, and traverse stages. Techniques such as Arbitrary Lagrangian–Eulerian (ALE) formulation, adaptive meshing, and computational feature of mass scaling were utilized to simulate sequence events during the friction stir welding process. The contact between the welding tool and workpiece was modelled through applying Coulomb’s friction model with a nonlinear friction coefficient value. Also, the model considered the effect of nonlinear material properties as well as heat transfer conditions such as heat losses due to convection and thermal contact conductance between the workpiece and the backing plate interface on the thermal history. To validate the computational model results, an experimental procedure was carried out to measure temperature history on both sides of the specimen as well as the plunging force throughout the whole process time. The results obtained showed that symmetrical temperature distribution throughout the workpiece width was distinguished, implying that the tool rotation has a minor effect on the final temperature distribution. In addition, asymptotic V shape with high gradient temperature value in the weld nugget region after the full plunging was distinguished. Mechanical stresses and related plastic deformations generated, while achieving the FSW samples were evaluated in addition to the tool reaction force and heat generated to protect against tool failure.
In this work, 332 Al alloy was prepared and reinforced with (0.5% and 1%) nano-Al2O3 particles. The prepared unreinforced and reinforced 332 Al alloy with nano-Al2O3 were solution heat treated (T6) at 510 ̊C and aged at 225 ̊C with different times (1, 3, and 5 h). Hardness test was performed on all the prepared alloys. All prepared alloys were dry slided under different applied loads (5, 10, 15, and 20 N) against steel counterface surface using pin on disk apparatus. The results showed that refinement effect was observed after addition of nano-Al2O3 particles and a change in silicon morphology after performing the solution heat treatment. The results also showed that har
... Show MoreThe laws of the three religions tend to extend the rules and foundations of coexistence, and this is achieved in achieving the values and principles that these laws have nourished in all societies.
Our research deals with a major problem that has broken out in our societies, namely (disturbing the balance of values and behavioral standard between people), and perhaps one of the greatest causes of the problem is to move away from the correct divine discourse and sound approach, as well as corruption of common sense and the violation of its rules and found principles in the hearts of people.
Liposomal amphotericin B (Amph B) has been used effectively to treat leishmaniosis, in spite of its high toxicity appeared in some patients. In our study, Amph B was administered in Leishmania donovani that infected BALB/c male mice using different concentrations to evaluate its efficacy challenge against infection as well as its effect in modulating immunity of the host. We observed that low doses with short duration of Amph B as a therapy regime significantly enhanced the induction of Th1 cytokine (INF-γ), but suppressed Th2 cytokine (IL-10) production. Groups of mice infected with L. donovani and treated with Amph B showed clearly increasing in INF-γ level and reduction in IL-10 level in concentration (3, 4, 5 mg/ml/kg) with best resul
... Show MoreBackground Alloys with the addition of zirconium and niobium eliminate the adverse effects of aluminum and vanadium on the nervous system, the possibility of metallosis and the initiation of diseases (including cancers or Alzheimer›s disease). In addition, they have better corrosion resistance, and a Young›s modulus value similar to longitudinal bone tissue. Therefore, only choosing appropriate materials does not guarantee proper functioning of the implants, the surfaces of the implants also have to be suitable to meet the requirements. The laser surface hardening process modifies the surface properties by imparting microstructural changes, whereas surface remelting induces changes in the surface topography, roughness, wettability and w
... Show MoreThe present research had dealt with preparing bars with the length of about (13 cm) and adiametar of (1.5 cm) of composite materials with metal matrix represented by (Al-Cu-Mg) alloy cast enforced by (ZrO2) particles with chosen weight percentages (1.5, 2.5 ,3.5, 5.5 %). The base cast and the composite materials were prepared by casting method by uses vortex Technique inorder to fix up (ZrO2) particles in homogeneous way on the base cast. In addition to that, two main groups of composite materials were prepared depending on the particles size of (ZrO2) , respectively. &n
... Show MoreThis research includes a study of dezincification by corrosion from brass alloys in three types of media, which are acidic solution, basic and slat solution in different percentages. The study show the higher dezincification occurs in basic solution which decrease the fatigue properties where the fatigue properties are inversely proportional with dezincification.
This research was to determine the effect of rare earth metal (REM) on the as-cast microstructure of Mg-4Al alloy. The rare earth metal used here is Lanthanum to produce Mg-4Al-1.5La alloy. The microstructure was characterized by optical microscopy. The phases of this alloy were identified by X-ray diffraction. The microstructure of Mg-4Al consists of α-Mg and grain boundaries with precipitated phase particles. With the addition of Lanthanum, three distinct phases were identified in the X-ray diffraction patterns of the as cast Mg-4Al-1.5La: Mg, Al11La3, Al4La. The Mg17Al12 phase was not detected. The addition of Lanthanium increases the hardness and dec
... Show MoreAn experimental investigation has been carried out for zinc-nickel (Zn-Ni) electro-deposition using the constant applied current technique. Weight difference approach method was used to determine the cathode current efficiency and deposit thickness. Also, the influence effect of current density on the deposition process, solderability, and porosity of the plating layer in microelectronic applications were examined. The bath temperature effect on nickel composition and the form of the contract was studied using Scanning Electron Microscope (SEM). Moreover, elemental nature of the deposition was analyzed by Energy Dispersive X-Ray (EDX).
It has been found that the best bath temperature
... Show MoreThis paper focuses on the optimization of drilling parameters by utilizing “Taguchi method” to obtain the minimum surface roughness. Nine drilling experiments were performed on Al 5050 alloy using high speed steel twist drills. Three drilling parameters (feed rates, cutting speeds, and cutting tools) were used as control factors, and L9 (33) “orthogonal array” was specified for the experimental trials. Signal to Noise (S/N) Ratio and “Analysis of Variance” (ANOVA) were utilized to set the optimum control factors which minimized the surface roughness. The results were tested with the aid of statistical software package MINITAB-17. After the experimental trails, the tool diameter was found as the most important facto
... Show MoreThe present study was conducted to evaluate the effect of different inhibitors on the corrosion rate of aluminum in 50% (v/v) ethylene glycol solution at 80°C and pH 8.0 in which the electrochemical technique of linear sweep voltammetry was employed to characterize each inhibitor function and to calculate the corrosion rate from Tafel plots generated by a computer assisted potentiostat.
It is found that both sodium dichromate and borax reduces the corrosion rate by polarizing the anodic polarization curve while sodium phosphate, potassium phosphate, and sodium benzoate reduces the corrosion rate by polarizing both the anodic and cathodic polarization curve.
When inhibitor concentration increases from I g/l up
... Show More