Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world’s rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world’s rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
A simple, rapid, accurate and sensitive spectrophotometric method for the determination of thiaminehydrochloride has been developed. The method is based on the formation of the Schiff’s base between the primary amino group present in thiamine hydrochloride and aldehyde group present in the vanillin reagent to produce a yellow colored complex having maximum absorption at 390 nm. Beer’s law has obeaid over the concentration range of 2-28µg/mL, with molar absorptivity of 0.96x104L/mol.cm. The average recovery which is a measure of accuracy is 100±1.3% and the relative standard deviation (RSD) is less than1.5 .The present method is considered to be
... Show MoreAmiodarone hydrochloride (AH) has been determined spectrophotometrically Using methyl orange (MO). In our previous researches MO was used for determination of Mexiletine Hydrochloride [1]. The method based on complexation between MO and AH. After shaking and diluting the complex solution with D.W, the pH was adjusted with NaOH and HCl to pH 3. The colored complex formed between AH and the reagent were transferred into separating funnels and extracted using 5.5ml CH2Cl2 and were shaken for (5 minutes). The extracted organic layer was used for preparation of the calibration curves for spectrophotometric measurements of AH at 434nm. The blanks were carried out in exactly the same way throughout the whole procedure.&n
... Show MoreThis study seeks to shed light on the aspects of visual pollution and its impact on the aesthetics of the town of Al-Eizariya known to suffer from the phenomenon. In order to identify the real causes of the problem which develops in various forms and patterns, threatening not only the aesthetic appearance of the towns, but also causes the emergence of new problems and phenomena that will have negative repercussions on the population. The researcher uses the analytical descriptive method to analyze the phenomenon of visual pollution in terms of reality, development, manifestations and spread and uses photos which document the visual pollution and its impact on the aesthetics of the known. The study concluded the existence of a strong rela
... Show MoreThis paper describes the use of remote sensing techniques in verification of the polluted area in Diyala River and Tigris River and the effected of AL-Rustamiyah wastewater treatment plant, which is located on Diyala River, one of the branches of Tigris River in south of Baghdad. SPOT-5 a French satellite image of Baghdad, Iraq was used with ground resolution of 2.5 m in May 2016. ENVI 5.1 software programming was utilized for Image processing to assess the water pollution of Diyala and Tigris River’s water. Five regions were selected from a study area and then classified using the unsupervised ISODATA method. The results indicated that four classes of water quality which are successful in assessing and mapping water pollution which confi
... Show MoreThe need for detection and investigation of the causes of pollution of the marshes and submit a statistical study evaluated accurately and submitted to the competent authorities and to achieve this goal was used to analyze the factorial analysis and then obtained the results from this analysis from a sample selected from marsh water pollutants which they were: (Electrical Conductivity: EC, Power of Hydrogen: PH, Temperature: T, Turbidity: TU, Total Dissolved Solids: TDS, Dissolved Oxygen: DO). The size of sample (44) sites has been withdrawn and examined in the laboratories of the Iraqi Ministry of Environment. By illustrating SPSS program) the results had been obtained. The most important recommendation was to increase the pumping of addit
... Show MoreBioaccumulation of heavy metals in the terrestrial invertebrates in Al-Jadriyia district Baghdad- Iraq were investigated. Forth terrestrial invertebrates snails, slug, isopods, and diplopods , were selected for this study. The results showed that all invertebrate groups have the ability in accumulate considerable amounts of heavy metals. Higher levels of zinc and copper were observed in the isopods specimens, it's about ( 60.50±0.58 ) and ( 96.00±0.58 ) ppm respectively , while higher levels of lead were observed in the diplopods specimens ,it's about ( 23.00±1.15 ) ppm ,but the higher levels of both iron and cadmium were observed in snail specimens , it's about ( 590.00±1.15 ) and ( 9.50±1.15 ) ppm respectively .but the
... Show MorePhotonic Crystal Fiber (PCF) based on the Surface Plasmon Resonance (SPR) effect has been proposed to detect polluted water samples. The sensing characteristics are illustrated using the finite element method. The right hole of the right side of PCF core has been coated with chemically stable gold material to achieve the practical sensing approach. The performance parameter of the proposed sensor is investigated in terms of wavelength sensitivity, amplitude sensitivity, sensor resolution, and linearity of the resonant wavelength with the variation of refractive index of analyte. In the sensing range of 1.33 to 1.3624, maximum sensitivities of 1360.2 nm ∕ RIU and 184 RIU−1 are achieved with the high sensor resolutions of 7
... Show More