A simple, rapid, accurate and sensitive spectrophotometric method for the determination of thiaminehydrochloride has been developed. The method is based on the formation of the Schiff’s base between the primary amino group present in thiamine hydrochloride and aldehyde group present in the vanillin reagent to produce a yellow colored complex having maximum absorption at 390 nm. Beer’s law has obeaid over the concentration range of 2-28µg/mL, with molar absorptivity of 0.96x104L/mol.cm. The average recovery which is a measure of accuracy is 100±1.3% and the relative standard deviation (RSD) is less than1.5 .The present method is considered to be simple because it does not need heating, hydrolysis and solvent extraction steps. The ingredients often formulated with thiamine and have been shown not to interfere, and is suitable for the routine determination of thiamine hydrochloride. The proposed method has been successfully applied for the determination of thiamine hydrochloride in pure form and in pharmaceutical preparations.
Amiodarone hydrochloride (AH) has been determined spectrophotometrically Using methyl orange (MO). In our previous researches MO was used for determination of Mexiletine Hydrochloride [1]. The method based on complexation between MO and AH. After shaking and diluting the complex solution with D.W, the pH was adjusted with NaOH and HCl to pH 3. The colored complex formed between AH and the reagent were transferred into separating funnels and extracted using 5.5ml CH2Cl2 and were shaken for (5 minutes). The extracted organic layer was used for preparation of the calibration curves for spectrophotometric measurements of AH at 434nm. The blanks were carried out in exactly the same way throughout the whole procedure.&n
... Show MoreVerapamil Hydrochloride (VH) has been determined spectrophotometrically by using Methyl Orange (MO). In our previous researches MO was used for determination of Mexiletine Hydrochloride [1]. The method was based on complexation between (MO and VH). After shaking and diluting the complex solution with D.W, the pH was adjusted with NaOH and HCl to pH 4. The colored complex formed between VH and the reagents were transferred into separating funnels and extracted using 4.5 ml CH2Cl2 and were shaken for (4 minutes). The extracted organic layer was used for the preparation of the calibration curves for spectrophotometric measurements of VH at 437nm. The blanks were carried out in exactly the same way throughout the whol
... Show MoreDetermination of vitamin B6 (pyridoxine hydrochloride) was described using high performance liquid chromatographic method. The analysis was achieved by cosmos IL 5C18-MS-II column (250 mm x 4.6 mm i. d., 5µm particle size) at room temperature. The mobile phase used was Acetonitrile, buffer solution (Citric acid, Na2HPO4 pH4) buffer solution in the ratio (70:30) (V: V). the flow rate was set to 1.25 mL.min-1 and the retention time 1.82 min with UV-detection at 282 nm. Beer's law was obeyed over the concentration range 10-1250 µg.mL-1. The method was accurate (relative error % less than 0.05%), precise (RSD better than ±1.05%), average recovery 100.
... Show MoreA spectrophotometric method has been proposed for the determination of two drugs containing phenol group [phenylephrine hydrochloride (PHP) and salbutamol sulphate (SLB)] in pharmaceutical dosage forms. The method is based on the diazotization reaction of metoclopramide hydrochloride (MCP) and coupling of the diazotized reagent with drugs in alkaline medium to give intense orange colored product (?max at 470 nm for each of PHP and SLB). Variable parameters such as temperature, reaction time and concentration of the reactants have been analyzed and optimized. Under the proposed optimum condition, Beer’s law was obeyed in the concentration range of 1-32 and 1-14 ?g mL-1 for PHP and SLB, respectively. The limit of detection (LOD) and l
... Show MoreWe propose two simple, rapid, and convenient spectrophotometric methods which are described for the determination of cephalexin in bulk and its pharmaceutical preparations. They are based on the measurement of the flame atomic emission of potassium ion (in the first method) and colorimetric determination of the green colored solution at 610 nm formed after the reaction of cephalexin with potassium permanganate as an oxidant agent (in the second method) in basic medium. The working conditions of the methods are investigated and optimized. Beer's law plot shows a good correlation in the concentration range of 5-40?g ml-1. The detection limits are 2.573,2.814 ?g ml-1 for the flame emission photometric method and 1.844,2.016 ?g ml-1 for colo
... Show MoreIn this research, salbutamol sulphate (SAS) has been determined by a simple, rapid and sensitive spectrophotometric method. Salbutamol sulphate in this method is based on the coupling of SAS with diazotized ρ- bromoaniline reagent in alkaline medium of Triton X-100 (Tx) to form an orange azo dye which is stable and water-soluble. The azo dye is exhibiting maximum absorption at 441 nm. A 10 - 800 µg of SAS is obeyed of Beer's law in a final volume of 20 ml, i.e., 0.5- 40 ppm with ε, the molar absorptivity of 48558 L.mol-1.cm-1 and Sandell's sensitivity index of 0.01188 µg.cm-2. This new method does not need solvent extraction or temperature control which is well applied to determine SAS in d
... Show MoreA simple, fast, and sensitive spectrophotometric method was suggested for the determination of Bromhexine Hydrochloride (BHH) in its pharmaceutical formulations. The method depends on the diazotization of BHH by sodium nitrite in acidic medium to produce the corresponding diazonium salt. The latter is coupled with phloroglucinol reagent in alkali medium to form a yellow water soluble azo-dye which has a maximum absorption at 405 nm with a molar absorptivity of 2.7×104 l.mol-1.cm-1 and Sandellʼs sensitivity of 0.01517 µg.cm-1. Beerʼs low is obeyed within a concentration range of 0.25-15 µg.mL-1 of BHH. The LOD and LOQ values of the proposed method were 0.087 µg.mL
Two simple, sensitive, accurate and economic methods A and B have been developed for the quantitative estimation of vancomycin hydrochlorid (VHC) and its formulations using another two drug compounds as a coupling reagents.The proposed methods are based on a coupling reaction between VHC and diazotized procain (method A) or diazotized sulphacetamide sodium (method B) in alkaline medium to form intense yellow, water-soluble dyes that are very stable and have a maximum absorption at 447 and 439 nm for methods A and B respectively. Regression analysis of Beer’s law plots showed good correlation in the concentration ranges 1-28 and 1-45 μg ml-1 for methods A and B, respectively with a molar absorbtivity of 4.605×104 L mol-1cm-1 and 4.516
... Show MoreTwo simple, sensitive, accurate and economic methods A and B have been developed for the quantitative estimation of vancomycin hydrochlorid (VHC) and its formulations using another two drug compounds as a coupling reagents.The proposed methods are based on a coupling reaction between VHC and diazotized procain (method A) or diazotized sulphacetamide sodium (method B) in alkaline medium to form intense yellow, water-soluble dyes that are very stable and have a maximum absorption at 447 and 439 nm for methods A and B respectively. Regression analysis of Beer’s law plots showed good correlation in the concentration ranges 1-28 and 1-45 μg ml-1 for methods A and B, respectively with a molar absorbtivity of 4.605×104 L mol-1cm-1 and 4.516
... Show MoreNew, simple and accurate batch and flow injection spectrophotometric
methods have been developed for the determinationsof tetracycline
hydrochloride (TCH) and doxycycline hyclate (DCH) in pharmaceutical
preparations. The methods are based on diazotization of
metchlopramide and coupling reaction with either TCH or DCH in alkaline
medium to form yellow–orange water soluble dye with absorption maxima
at 414 and 436 nm for TCH and DCH, respectively. A graphs of absorbance
versus concentration show that Beer’s law was obeyed over the
concentration ranges of 1 –52 μgmL-1 TCH and DCH for batch method and
of 8 – 240 μg mL-1 TCH and 5 – 350 μgmL-1 DCH for FIA method. The
limits of detection in batchmetho