In this study water-soluble N-Acetyl Cysteine Capped-Cadmium Telluride QDs (NAC/CdTe nanocrystals) using N-acetyl cysteine as a stabilizer were prepared to investigate the utility of quantum dots (QDs) in distinguishing damaged DNA, (extracted from blood samples of leukaemia patients), from intact DNA (extracted from blood samples of healthy individuals) to be used for biosensing application. Based on the optical characterization of the prepared QDs, the XRD results revealed the formation of the NAC-CdTe-QDs with a grain size of 7.1nm. Whereas, the SEM test showed that the spherical size of the NAC-CdTe-QDs lies within 11~33nm. NAC-CdTe-QDs have superior PL emission properties at of 550nm and UV-Vis absorption peak at 300nm. The energy gap measurement through PL and UV–Vis was found to be 2.2eV and 2.3 eV, respectively. The interaction between the synthesized QDs and the extracted genomic DNA (both cancer damaged DNA and healthy undamaged DNA) was analysed optically, and compared to the normal reference DNA. The results showed a shift in the maximum fluorescence emission intensities (observed at 540nm nm for a damaged sample and 535 for a reference cell). Based on the obtained fluorescence results, the present study reached the conclusion that the prepared core/shell QDs could be employed as probes for diagnosing genetically disrupted DNA that is associated with malignant diseases from healthy DNA.
Aromaticity, antiaromaticity and chemical bonding in the ground (S0), first singlet excited (S1) and lowest triplet (T1) electronic states of disulfur dinitride, S2N2, were investigated by analysing the isotropic magnetic shielding, σiso(r), in the space surrounding the molecule for each electronic state. The σiso(r) values were calculated by state-optimized CASSCF/cc-pVTZ wave functions with 22 electrons in 16 orbitals constructed from gauge-including atomic orbitals (GIAOs). The S1 and T1 electronic states were confirmed as 11Au and 13B3u, respectively, through linear response CC3/aug-cc-pVTZ calculations of the vertical excitation energies for eight singlet (S1–S8) and eight triplet (T1–T8) electronic states. The aromaticities of S
... Show MoreBackground: All diseases concerning bone destruction such as osteoporosis and periodontal diseases share common pattern in which the osteoclast cells are absolutely responsible for bone resorption that occurred when osteoclast activity exceeds osteoblast activity. Osteoprotegrin (OPG) considered as novel soluble decoy receptor known as “bone protector†since it prevents extreme bone resorption through inhibition of differentiation and activity of osteoclast by competing for binding site. It binds to receptor activator of nuclear factor kappa-B ligand (RANKL) and prevent its interaction with receptor activator of nuclear factor kappa-B (RANK), thus inhibits osteoclast formation. TNF-α is a pro-inflammatory cytokines having
... Show MoreAdipose tissue releases pro- and anti-inflammatory cytokines and hormones such as irisin, visfatin, and interleukin-6, which may be linked to periodontal diseases.
Our study aimed to determine salivary irisin, visfatin, and interleukin-6 levels in gingivitis and periodontitis patients, compare them with healthy periodontal patients, and evaluate the association between these biomarkers.
In this paper, we will introduce the concept of interval value fuzzy n-fold KU-ideal in KU-algebras, which is a generalization of interval value fuzzy KU-ideal of KU-algebras and we will obtain few properties that is similar to the properties of interval value fuzzy KU-ideal in KU-algebras, see [8]. Also, we construct some algorithms for folding theory applied to KU-ideals in KU-algebras.
Asphaltenes are a solubility class described as a component of crude oil with undesired characteristics. In this study, Sharqy Baghdad heavy oil upgrading was achieved utilizing the solvent deasphalting approach as asphaltenes are insoluble in paraffinic solvents; they may be removed from heavy crude oil by adding N-Hexane as a solvent to create deasphalted oil (DAO)of higher quality. This method is known as Solvent De-asphalting (SDA). Different effects have been assessed for the SDA process, such as solvent to oil ratio (4-16/1 ml/g), the extraction temperature (23 ºC) room temperature and (68 ºC) reflux temperature at (0.5 h mixing time with 400 rpm mixing speed). The best solvent deasphalting results were obtained at room temp
... Show MoreResearch has included preparation of three of n Vthal acids Amec Bmentoj high of interaction vehicles Ortometta and bar aminophenol with phthalic anhydride was withdrawn water and ring closure of acids Alvthal AMEC prepared
Q-switched lasers widely used in management skin diseases and
sometimes its effect may be inadequate or associated with
cytotoxicity. The current study aimed to investigate the effect of
Q-switched Nd:YAG laser upon cellular elements using in vitro
experimental model. Aqueous solutions of human albumin and pure
calf thymus double strand deoxyribonucleic acid (ctdsDNA)
irradiated with Q-switched Nd:YAG laser at different rates (1, 3 Hz)
and time exposure (up to 60 seconds) using 532 nm (400 mJ) and
1064 (1200 mJ) nm wavelength with fixed spot size of 4 mm. The
effect of laser irradiation on the albumin solution also studied in the
presence of elemental salts of copper, zinc and iron.
Q-switched laser irrad
The present work includes the preparation and characterization of{Co(II) , Ni(II), Pd(II), Fe(III) , Ru(III),Rh(III), Os(III) , Ir(III) , Pt(IV) and VO(IV)}complexes of a new ligand 4-[(1-phenyl-2,3-dimethyl-3-pyrozoline-5-one)azo]-N,N-dimethylanline (PAD). The product (PAD) was isolated,studies and characterized by phsical measurements,i.e., (FT-IR), (UV) Spectroscopy and elemental analysis(C.H.N). The prepared complexes were identified and their structural geometric were suggested in solid state by using flame atomic absorption, elemental analysis(C.H.N), (FT-IR) and (UV-Vis) Spectroscopy, as well as magnetic susceptibility and conductivity measurements . The study of the nature of the complexes formed in( ethanolic solution) following t
... Show More