In cognitive radio system, the spectrum sensing has a major challenge in needing a sensing method, which has a high detection capability with reduced complexity. In this paper, a low-cost hybrid spectrum sensing method with an optimized detection performance based on energy and cyclostationary detectors is proposed. The method is designed such that at high signal-to-noise ratio SNR values, energy detector is used alone to perform the detection. At low SNR values, cyclostationary detector with reduced complexity may be employed to support the accurate detection. The complexity reduction is done in two ways: through reducing the number of sensing samples used in the autocorrelation process in the time domain and through using the Slid
... Show MoreThe basic solution to overcome difficult issues related to huge size of digital images is to recruited image compression techniques to reduce images size for efficient storage and fast transmission. In this paper, a new scheme of pixel base technique is proposed for grayscale image compression that implicitly utilize hybrid techniques of spatial modelling base technique of minimum residual along with transformed technique of Discrete Wavelet Transform (DWT) that also impels mixed between lossless and lossy techniques to ensure highly performance in terms of compression ratio and quality. The proposed technique has been applied on a set of standard test images and the results obtained are significantly encourage compared with Joint P
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreConstruction projects have become a changing dramatically in recent decades and that the goal of the beneficiaries of the implementation of structural project is to complete the work with less time and within the cost of the specific and the best possible quality may sometimes happen that highlights the importance of time on the rest of the items at the implementation of projects for various reasons, including the need to use the project as soon as possible possible change rapidly to customer's requests, but the high cost of the project represents the biggest obstacle for entrepreneurs with its effects on the quality and the time workers, and is a measure of those elements in monetary terms is the key to integration between them, so the
... Show MoreIn this research the Empirical Bayes method is used to Estimate the affiliation parameter in the clinical trials and then we compare this with the Moment Estimates for this parameter using Monte Carlo stimulation , we assumed that the distribution of the observation is binomial distribution while the distribution with the unknown random parameters is beta distribution ,finally we conclude that the Empirical bayes method for the random affiliation parameter is efficient using Mean Squares Error (MSE) and for different Sample size .
The video steganography is a technique to hide information inside video file.Whereas video Steganography is a very important task in real life where the users want to keep data, so the steganography process used for the secure data transmission from the sender to receiver through the internet. Least significant bit (LSB) insertion technique operates on LSB bit of the media file to hide the information bit. In this paper steganography technique used to hide the information inside compressed video as development of a standard method in order to benefit from the advantages of the compression process, which added to the video, these features are reduce storage size of video, and reduce bandwidth to transfer data in faster way with save time
... Show MoreThe steganography (text in image hiding) methods still considered important issues to the researchers at the present time. The steganography methods were varied in its hiding styles from a simple to complex techniques that are resistant to potential attacks. In current research the attack on the host's secret text problem didn’t considered, but an improved text hiding within the image have highly confidential was proposed and implemented companied with a strong password method, so as to ensure no change will be made in the pixel values of the host image after text hiding. The phrase “highly confidential” denoted to the low suspicious it has been performed may be found in the covered image. The Experimental results show that the covere
... Show MoreCoronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing
... Show More