In this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.
In this paper, the finite difference method is used to solve fractional hyperbolic partial differential equations, by modifying the associated explicit and implicit difference methods used to solve fractional partial differential equation. A comparison with the exact solution is presented and the results are given in tabulated form in order to give a good comparison with the exact solution
In the present research, a crane frame has been investigated by using finite element method. The damage is simulated by reducing the stiffness of assumed elements with ratios (10% and 20 %) in mid- span of the vertical column in crane frame. The cracked beam with a one-edge and non-propagating crack has been used. Six cases of damage are modeled for crane frame and by introducing cracked elements at different locations with ratio of depth of crack to the height of the beam (a/h) 0.1, 0.20. A FEM program coded in Matlab 6.5 was used to model the numerical simulation of the damage scenarios. The results showed a decreasing in the five natural frequencies from undamaged beam which means
... Show MoreDecision making is vital and important activity in field operations research ,engineering ,administration science and economic science with any industrial or service company or organization because the core of management process as well as improve him performance . The research includes decision making process when the objective function is fraction function and solve models fraction programming by using some fraction programming methods and using goal programming method aid programming ( win QSB )and the results explain the effect use the goal programming method in decision making process when the objective function is
fraction .
In this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.
The aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.
Texture recognition is used in various pattern recognition applications and texture classification that possess a characteristic appearance. This research paper aims to provide an improved scheme to provide enhanced classification decisions and to decrease processing time significantly. This research studied the discriminating characteristics of textures by extracting them from various texture images using discrete Haar transform (DHT) and discrete Fourier transform DFT. Two sets of features are proposed; the first set was extracted using the traditional DFT, while the second used DHT. The features from the Fourier domain are calculated using the radial distribution of spectra, while for those extracted from Haar Wavelet the statistical
... Show MoreThe influence of an aortic aneurysm on blood flow waveforms is well established, but how to exploit this link for diagnostic purposes still remains challenging. This work uses a combination of experimental and computational modelling to study how aneurysms of various size affect the waveforms. Experimental studies are carried out on fusiform-type aneurysm models, and a comparison of results with those from a one-dimensional fluid–structure interaction model shows close agreement. Further mathematical analysis of these results allows the definition of several indicators that characterize the impact of an aneurysm on waveforms. These indicators are then further studied in a computational model of a systemic blood flow network. This demonstr
... Show More