يھدف البحث الى اجراء تقدير دالة المعولية لتوزيــع ويبل ذي المعلمتين بالطرائـق المعلميــة والمتمثلة بـ (NWLSM,RRXM,RRYM,MOM,MLM (، وكذلك اجراء تقدير لدالة المعولية بالطرائق الالمعلمية والمتمثلة بـ . (EM, PLEM, EKMEM, WEKM, MKMM, WMR, MMO, MMT) وتم استخدام اسلوب المحاكاة لغرض المقارنة باستخدام حجوم عينات مختلفة (20,40,60,80,100) والوصول الى افضل الطرائق في التقدير باالعتماد على المؤشر االحصائي متوسط مربعات الخطا التكاملي (IMSE(، وقد توصل البحث الى ايجاد وزن مقترح معدل (1)، و وزن مقترح معدل (2) لطريقة مقدر كابلن مير التجريبي الموزون (WEKM(، وقد توصل البحث الى ان افضل طريقة معلمية لتقدير دالة المعولية ھي طريقة (االمكان االعظم (MLM((، وبالنسبة الفضل طريقة الالمعلمية ھي طريقة (طرائق التجريب (EM((.
Weibull distribution is considered as one of the most widely distribution applied in real life, Its similar to normal distribution in the way of applications, it's also considered as one of the distributions that can applied in many fields such as industrial engineering to represent replaced and manufacturing time ,weather forecasting, and other scientific uses in reliability studies and survival function in medical and communication engineering fields.
In this paper, The scale parameter has been estimated for weibull distribution using Bayesian method based on Jeffery prior information as a first method , then enhanced by improving Jeffery prior information and then used as a se
... Show MoreThe aim of this paper is to estimate a nonlinear regression function of the Export of the crude oil Saudi (in Million Barrels) as a function of the number of discovered fields.
Through studying the behavior of the data we show that its behavior was not followed a linear pattern or can put it in a known form so far there was no possibility to see a general trend resulting from such exports.
We use different nonlinear estimators to estimate a regression function, Local linear estimator, Semi-parametric as well as an artificial neural network estimator (ANN).
The results proved that the (ANN) estimator is the best nonlinear estimator am
... Show MoreThis article aims to explore the importance of estimating the a semiparametric regression function ,where we suggest a new estimator beside the other combined estimators and then we make a comparison among them by using simulation technique . Through the simulation results we find that the suggest estimator is the best with the first and second models ,wherealse for the third model we find Burman and Chaudhuri (B&C) is best.
المستخلـص
تم في هذا البحث دراسة الطرائق اللامعلمية الرتيبة لتقدير دالة الأنحدار اللامعلمي، ومعالجة القيم الشاذة الموجودة في دالة الأنحدار اللامعلمي لجعل الدالة رتيبة (متزايدة أو متناقصة).
لذا سنقوم أولاً بتقدير دالة الأنحدار اللامعلمي بإستخدام ممهد Kernel ومن ثم تطبيق الطرائق الرتيبة لجعل الدالة متزايدة إذ سنتناول ثلاث طرائق للتقدير:-
1- طريقة ste
... Show MoreThe technology of reducing dimensions and choosing variables are very important topics in statistical analysis to multivariate. When two or more of the predictor variables are linked in the complete or incomplete regression relationships, a problem of multicollinearity are occurred which consist of the breach of one basic assumptions of the ordinary least squares method with incorrect estimates results.
There are several methods proposed to address this problem, including the partial least squares (PLS), used to reduce dimensional regression analysis. By using linear transformations that convert a set of variables associated with a high link to a set of new independent variables and unr
... Show MoreIn this research, some robust non-parametric methods were used to estimate the semi-parametric regression model, and then these methods were compared using the MSE comparison criterion, different sample sizes, levels of variance, pollution rates, and three different models were used. These methods are S-LLS S-Estimation -local smoothing, (M-LLS)M- Estimation -local smoothing, (S-NW) S-Estimation-NadaryaWatson Smoothing, and (M-NW) M-Estimation-Nadarya-Watson Smoothing.
The results in the first model proved that the (S-LLS) method was the best in the case of large sample sizes, and small sample sizes showed that the
... Show MoreThe aim of this study is to estimate the parameters and reliability function for kumaraswamy distribution of this two positive parameter (a,b > 0), which is a continuous probability that has many characterstics with the beta distribution with extra advantages.
The shape of the function for this distribution and the most important characterstics are explained and estimated the two parameter (a,b) and the reliability function for this distribution by using the maximum likelihood method (MLE) and Bayes methods. simulation experiments are conducts to explain the behaviour of the estimation methods for different sizes depending on the mean squared error criterion the results show that the Bayes is bet
... Show MoreIn this research, the one of the most important model and widely used in many and applications is linear mixed model, which widely used to analysis the longitudinal data that characterized by the repeated measures form .where estimating linear mixed model by using two methods (parametric and nonparametric) and used to estimate the conditional mean and marginal mean in linear mixed model ,A comparison between number of models is made to get the best model that will represent the mean wind speed in Iraq.The application is concerned with 8 meteorological stations in Iraq that we selected randomly and then we take a monthly data about wind speed over ten years Then average it over each month in corresponding year, so we g
... Show More
Abstract:
The models of time series often suffer from the problem of the existence of outliers that accompany the data collection process for many reasons, their existence may have a significant impact on the estimation of the parameters of the studied model. Access to highly efficient estimators is one of the most important stages of statistical analysis, And it is therefore important to choose the appropriate methods to obtain good estimators. The aim of this research is to compare the ordinary estimators and the robust estimators of the estimation of the parameters of
... Show MoreThe penalized least square method is a popular method to deal with high dimensional data ,where the number of explanatory variables is large than the sample size . The properties of penalized least square method are given high prediction accuracy and making estimation and variables selection
At once. The penalized least square method gives a sparse model ,that meaning a model with small variables so that can be interpreted easily .The penalized least square is not robust ,that means very sensitive to the presence of outlying observation , to deal with this problem, we can used a robust loss function to get the robust penalized least square method ,and get robust penalized estimator and
... Show More