Preferred Language
Articles
/
WxeRP48BVTCNdQwC8Gag
Bayes Classification and Entropy Discretization of Large Datasets using Multi-Resolution Data Aggregation
...Show More Authors

Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such as decision tree and nearest neighbor search. The proposed method can handle streaming data efficiently and, for entropy discretization, provide su the optimal split value.

Scopus Crossref
View Publication
Publication Date
Sun Jan 12 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Postoperative assessment of dental implants by using multi-slice computed tomography
...Show More Authors

Background: Implantology is a fast growing area in dentistry. One of the most common issues encountered in dental implantation procedures is the lack of adequate preoperative planning. Conventional radiography may not be able to assess the true regional three-dimensional anatomical presentation. Multi Slice Computed Tomography provides data in 3-dimentional format offering information on craniofacial anatomy for diagnosis; this technology enables the virtual placement of implant in a 3-Dimensional model of the patient jaw (dental planning). Patients, Material and Methods: The sample consisted of (72) Iraqi patients indicated for dental implant (34 male and 38 female), age range between (20-70) years old. They were examined during a time p

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2016
Journal Name
Ieee Transactions On Neural Systems And Rehabilitation Engineering
Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering
...Show More Authors

View Publication
Scopus (134)
Crossref (128)
Scopus Clarivate Crossref
Publication Date
Sun Jun 02 2013
Journal Name
Baghdad Science Journal
Comparison of Maximum Likelihood and some Bayes Estimators for Maxwell Distribution based on Non-informative Priors
...Show More Authors

In this paper, Bayes estimators of the parameter of Maxwell distribution have been derived along with maximum likelihood estimator. The non-informative priors; Jeffreys and the extension of Jeffreys prior information has been considered under two different loss functions, the squared error loss function and the modified squared error loss function for comparison purpose. A simulation study has been developed in order to gain an insight into the performance on small, moderate and large samples. The performance of these estimators has been explored numerically under different conditions. The efficiency for the estimators was compared according to the mean square error MSE. The results of comparison by MSE show that the efficiency of B

... Show More
Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Bayes Estimators With others , for scale parameter and Reliability function of two parameters Frechet distribution
...Show More Authors

View Publication Preview PDF
Crossref
Publication Date
Sun Jun 02 2013
Journal Name
Baghdad Science Journal
Comparison of Maximum Likelihood and some Bayes Estimators for Maxwell Distribution based on Non-informative Priors
...Show More Authors

In this paper, Bayes estimators of the parameter of Maxwell distribution have been derived along with maximum likelihood estimator. The non-informative priors; Jeffreys and the extension of Jeffreys prior information has been considered under two different loss functions, the squared error loss function and the modified squared error loss function for comparison purpose. A simulation study has been developed in order to gain an insight into the performance on small, moderate and large samples. The performance of these estimators has been explored numerically under different conditions. The efficiency for the estimators was compared according to the mean square error MSE. The results of comparison by MSE show that the efficiency of Bayes est

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 28 2019
Journal Name
Iraqi Journal Of Science
Estimate the Two Parameters of Gamma Distribution Under Entropy Loss Function
...Show More Authors

In this paper, Bayes estimators for the shape and scale parameters of Gamma distribution under the Entropy loss function have been obtained, assuming Gamma and Exponential priors for the shape and scale parameters respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s). The results show that, the performance of the Bayes estimator under Entropy loss function is better than other estimates in all cases.   

View Publication Preview PDF
Publication Date
Wed Apr 15 2020
Journal Name
Al-mustansiriyah Journal Of Science
Adaptation Proposed Methods for Handling Imbalanced Datasets based on Over-Sampling Technique
...Show More Authors

Classification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE),  Border

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison of Bayes Estimators for the parameter of Rayleigh Distribution with Simulation
...Show More Authors

   A comparison of double informative and non- informative priors assumed for the parameter of Rayleigh distribution is considered. Three different sets of double priors are included, for a single unknown parameter of Rayleigh distribution. We have assumed three double priors: the square root inverted gamma (SRIG) - the natural conjugate family of priors distribution, the square root inverted gamma – the non-informative distribution, and the natural conjugate family of priors - the non-informative distribution as double priors .The data is generating form three cases from Rayleigh distribution for different samples sizes (small, medium, and large). And Bayes estimators for the parameter is derived under a squared erro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Nov 18 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Comparison Between Standard Bayes Estimators of the Reliability Function of Exponential Distribution
...Show More Authors

   In this paper, a Monte Carlo Simulation technique is used to compare the performance of the standard Bayes estimators of the reliability function of the one parameter exponential distribution .Three types of loss functions are adopted, namely, squared error  loss function (SELF) ,Precautionary error loss function (PELF) andlinear exponential error  loss function(LINEX) with informative and non- informative prior .The criterion integrated mean square error (IMSE) is employed to assess the performance of such estimators

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
Weyl Module Resolution Res (6,6,4;0,0) in the Case of Characteristic Zero
...Show More Authors

In this work, we prove by employing mapping Cone that the sequence and the subsequence of the characteristic-zero are exact and subcomplex respectively in the case of partition (6,6,4) .

View Publication Preview PDF
Scopus (9)
Crossref (6)
Scopus Crossref