During this article, we have a tendency to show the peristaltic activity of magnetohydrodynamics flow of carreau fluid with heat transfer influence in an inclined tapered asymmetric channel through porous medium by exploitation the influence of non-slip boundary conditions. The tapered asymmetric channel is often created because of the intrauterine fluid flow induced by myometrial contraction and it had been simulated by asymmetric peristaltic fluid flow in an exceedingly two dimensional infinite non uniform channel, this fluid is known as hereby carreau fluid, conjointly we are able to say that one amongst carreau's applications is that the blood flow within the body of human. Industrial field, silicon oil is an example of carreau fluid. By exploitation, the perturbation technique for little values of weissenberg number, the nonlinear governing equations in the two-dimensional Cartesian coordinate system is resolved under the assumptions of long wavelength and low Reynolds number. The expressions of stream function, temperature distribution, the coefficient of heat transfer, frictional forces at the walls of the channel, pressure gradient are calculated. The effectiveness of interesting parameters on the inflow has been colluded and studied.
In this present paper , a special model was built to govern the equations of two dimensional peristaltic transport to nanofluid flow of a heat source in a tapered considered in an asymmetric channel. The equations of dimensionless temperature concentration are analytical solve under assumption slow Reynolds number and long wave length. Furthermore, the results that receive by expressing the maximum pressure rise communicates increased in case of non-Newtonian fluid when equated with Newtonian fluid. Finally, MATHEMATICA 11 program has been used to solve such system after obtaining the initial conditions. Most of the results of drawing for many are obtained via above program .
In this article, we investigate the peristaltic flow of a Powell-Eyring fluid flowing in an asymmetrical channel with an inclining magnetic field through a porous medium, and we focus on the impact that varying rotation has on this flow. Long wavelength and low Reynolds number are assumed, where the perturbation approach is used to solve the nonlinear governing equations in the Cartesian coordinate system to produce series solutions. Distributions of velocity and pressure gradients are expressed mathematically. The effect of these parameters is discussed and illustrated graphically through the set of figures. To get these numerical results, we used the math program MATHEMATICA.
This paper studies the influence of an inclined magnetic field on peristaltic transport of incompressible Bingham plastic fluid in an inclined symmetric channel with heat transfer and mass transfer. Slip conditions for heat transfer and concentration are employed. The formulation of the problem is presented through, the regular perturbation technique for small Bingham number Bn is used to find the final expression of stream
function, the flow rate, heat distribution and concentration distribution. The numerical solution of pressure rise per wave length is obtained through numerical integration because its analytical solution is impossible. Also the trapping phenomenon is analyzed. The effe
This paper aims to study a mathematical model showing the effects of mass transfer on MHD oscillatory flow for Carreau fluid through an inclined porous channel under the influence of temperature and concentration at a slant angle on the centre of the flow with the effect of gravity. We discussed the effects of several parameters that are effective on fluid movement by analyzing the graphs obtained after we reached the momentum equation solution using the perturbation series method and the MATHEMATICA program to find the numerical results and illustrations. We observed an increased fluid movement by increasing radiation and heat generation while fluid movement decreased by increasing the chemical reaction parameter and Froude number. 
... Show MoreThe aim of this paper is to study the combined effects of the concentration and the thermo-diffusion on the unsteady oscillation flow of an incompressible Carreau fluid through an inclined porous channel. The temperature is assumed to affect exponentially the fluid's viscosity. We studied fluid flow in an inclined channel under the non-slip condition at the wall. We used the perturbation series method to solve the nonlinear partial differential equations. Numerical results were obtained for velocity distribution, and through the graphs, it was found that the velocity of fluid has a direct relation with Soret number, Peclet number, and Grashof number, while it has a reverse variation with chemical reaction, Schmidt number, frequency of os
... Show MoreIn this paper, we discuss a fluid problem that has wide applications in biomechanics, polymer industries, and biofluids. We are concerned here with studying the combined effects of porous medium and heat transfer on MHD non-Newtonian Jeffery fluid which flows through a two dimensional asymmetric, inclined tapered channel. Base equations, represented by mass conservation, motion, energy and concentration conservation, were formulated first in a fixed frame and then transformed into a moving frame. By holding the assumptions of “long wavelength and low Reynolds number†these physical equations were simplified into differential equations. Approximate solutions for the velocity profile, stream function, and temperature profile we
... Show MoreIn this paper, we study the effects of a magnetic force on the flow of hybrid bio - nano fluid (Cu - Au. NPs) for a peristaltic channel through a porous medium in an asymmetric channel. Nanoparticles of gold and copper as well as the blood (the base fluid) is taken into account. By using the Adomian decomposition method to solve the governing equations, formulas for velocity, stream function, temperature, current density, and magnetic force have been obtained. The findings show that Gold nanoparticles have an elevation magnetic force compared with copper nanoparticles, based on fluid (blood) and hybrid nanofluid. Finally, the phenomenon of trapping is offered as an explanation for the physical behavior of many parameters. The ef
... Show MoreThe present study analyzes the effect of couple stress fluid (CSF) with the activity of connected inclined magnetic field (IMF) of a non-uniform channel (NUC) through a porous medium (PM), taking into account the sliding speed effect on channel walls and the effect of nonlinear particle size, applying long wavelength and low Reynolds count estimates. The mathematical expressions of axial velocity, stream function, mechanical effect and increase in pressure have been analytically determined. The effect of the physical parameter is included in the present model in the computational results. The results of this algorithm have been presented in chart form by applying the mathematical program.
This paper presents an investigation of peristaltic flow of Bingham plastic fluid in an inclined tapered asymmetric channel with variable viscosity. Taken into consideration Hall current, velocity, thermal slip conditions, Energy equation is modeled by taking Joule heating effect into consideration and by holding assumption of long wavelength and low Reynolds number approximation these equations simplified into couple of non-linear ordinary differential equations that solved using perturbation technique. Graphical analysis has been involved for various flow parameters emerging in the problem. We observed two opposite behaviors for Hall parameter and Hartman number on velocity axial and temperature curves.
In this paper, the effect of both rotation and magnetic field on peristaltic transport of Jeffery fluid through a porous medium in a channel are studied analytically and computed numerically. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, stream function, velocity and shear stress on the channel walls have been computed numerically. Effects of Hartman number, time mean flow, wave amplitude, porosity and rotation on the pressure gradient, pressure rise, stream function, velocity and shear stress are discussed in detail and shown graphically. The results indicate that the effect of Hartman number, time mean flow, wave a
... Show More