Copula modeling is widely used in modern statistics. The boundary bias problem is one of the problems faced when estimating by nonparametric methods, as kernel estimators are the most common in nonparametric estimation. In this paper, the copula density function was estimated using the probit transformation nonparametric method in order to get rid of the boundary bias problem that the kernel estimators suffer from. Using simulation for three nonparametric methods to estimate the copula density function and we proposed a new method that is better than the rest of the methods by five types of copulas with different sample sizes and different levels of correlation between the copula variables and the different parameters for the function. The results showed that the best method is to combine probit transformation and mirror reflection kernel estimator (PTMRKE) and followed by the (IPE) method when using all copula functions and for all sample sizes if the correlation is strong (positive or negative). But in the case of using weak and medium correlations, it turns out that the (IPE) method is the best, followed by the proposed method(PTMRKE), depending on (RMSE, LOGL, Akaike)criteria. The results also indicated that the mirror kernel reflection method when using the five copulas is weak.
This study investigates the application of hydraulic acid fracturing to enhance oil production in the Mishrif Formation of the Al-Fakkah oilfield due to declining flow rates and wellhead pressures resulting from asphaltene deposition and inadequate permeability. Implementing acid fracturing, an established technique for low-permeability carbonate reserves, was essential due to the inadequacy of prior solvent cleaning and acidizing efforts. The document outlines the protocols established prior to and following the treatment, emphasizing the importance of careful oversight to guarantee safety and efficacy. In the MiniFrac treatment, 150 barrels of #30 cross-linked gel were injected at 25 barrels per minute, followed by an overflush wi
... Show MoreThis study addresses the issue of academic writing in English by comparing pragmatic argumentation in the writing of 40 graduate students studying at Iraqi universities (SSIU) with the writing of 40 graduate students studying at American universities (SSAU). In these 80 theses, six selected aspects of academic writing were analyzed: (a) paragraph structure, (b) length and construction of sentences, (c) organization of information in sentences, (d) vocabulary, (e) topic sentences, and (f) discourse markers. This study seeks to go beyond the traditional and often onedimensional analysis of pragmatics of argumentation in English academic writing to distinguish and describe different aspects of academic writing and their results when used by EF
... Show More
The aim of this research is to determine the most important and main factors that lead to Preeclampsia. It is also about finding suitable solutions to eradicate these factors and avoid them in order to prevent getting Preeclampsia. To achieve this, a case study sample of (40) patients from Medical City - Oncology Teaching Hospital was used to collect data by a questionnaire which contained (17) reasons to be investigated. The statistical package (SPSS) was used to compare the results of the data analysis through two methods (Radial Bases Function Network) and (Factorial Analysis). Important results were obtained, the two methods determined the same factors that could represent the direct reason which causes Preecla
... Show MoreIn this paper, an efficient image segmentation scheme is proposed of boundary based & geometric region features as an alternative way of utilizing statistical base only. The test results vary according to partitioning control parameters values and image details or characteristics, with preserving the segmented image edges.
To perform a secure evaluation of Indoor Design data, the research introduces a Cyber-Neutrosophic Model, which utilizes AES-256 encryption, Role-Based Access Control, and real-time anomaly detection. It measures the percentage of unpredictability, insecurity, and variance present within model features. Also, it provides reliable data security. Similar features have been identified between the final results of the study, corresponding to the Cyber-Neutrosophic Model analysis, and the cybersecurity layer helped mitigate attacks. It is worth noting that Anomaly Detection successfully achieved response times of less than 2.5 seconds, demonstrating that the model can maintain its integrity while providing privacy. Using neutrosophic sim
... Show MoreThe research deals with Iraq's position of the Lebanese civil war and the Efforts made by Iraq in order to stop the bleeding of this war, the research also deals with the nature of regime in Lebanon and the developments that preceded the war and the positions of the internal and external competing forces, as weu as handling the Iraqi Syrian disagreement and it's impaet on the situation of Lebanon and the war developments.
The research focused on the Iraq's position towards the externd proposed solutions to solve the Lebanese civil war.
This search aim to measure Hardness for Epoxy resin and for unsaturated Polyester resin as base materials for composite Hybrid and the materials used is Hybrid fiber Carbon-Kevlar. The Hand Lay-up method was used to manufacture plates of Epoxy resin (EP) and unsaturated Polyester EP,UPE backed by Hybrid fiber (Carbon-Kevlar) and with small volume fraction 5,10 and 15 for every there are Layer of fibers (1,2 and 3). The hardness test was count for material EP, UPE resin and there composites and that we notice that the Hardness (HB) decreased with increase of temperatures.
In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.