The hydrolysis of urea by the enzyme urease is significant for increasing the irroles in human pathogenicity, biocementation, soil fertilizer, and subsequently in soil improvement. This study devoted to the isolation of urease from urea-rich soil samples collected from seven different locations. Isolation of the various bacterial species was conducted using nutrient agar. The identity of isolated urease was based on morphological characteristics and standard microbiological and biochemical procedures. The urease producing strains of bacteria were obtained using the urease hydrolysis test. The bacterial isolates produced from soil samples collected from different environments and treated by different morphological processes helped in precipitation of large calcium carbonate (CaCO3) crystal aggregates precipitated within bacterial colonies grown on agar. The different microbial species and functional attributes produced striking differences in the morphology of precipitated crystals. The phylogenetic sequencing of 16S ribosomal RNA genes produced several isolates that are mostly related to the Bacillus group. One strain of promising results was selected and the environmental and nutritional conditions were characterized. The growth curve of the selected strain with an optimized condition was investigated.
In this research a new system identification algorithm is presented for obtaining an optimal set of mathematical models for system with perturbed coefficients, then this algorithm is applied practically by an “On Line System Identification Circuit”, based on real time speed response data of a permanent magnet DC motor. Such set of mathematical models represents the physical plant against all variation which may exist in its parameters, and forms a strong mathematical foundation for stability and performance analysis in control theory problems.
Abstract Additive manufacturing has been recently emerged as an adaptable production process that can fundamentally affect traditional manufacturing in the future. Due to its manufacturing strategy, selective laser melting (SLM) is suitable for complicated configurations. Investigating the potential effects of scanning speed and laser power on the porosity, corrosion resistance and hardness of AISI 316L stainless steel produced by SLM is the goal of this work. When compared to rolled stainless steel, the improvement is noticeable. To examine the microstructure of the samples, the optical microscopy (OM), scanning electron microscopy (SEM), and EDX have been utilized. Hardness and tensile strength were us
... Show MoreBendable concrete, also known as Engineered Cementitious Composite (ECC) is a type of ultra-ductile cementitious composites reinforced with fibres to control the width of cracks. It has the ability to enhance concrete flexibility by withstanding strains of 3% and higher. The properties of bendable concrete mixes (compressive strength, flexural strength, and drying shrinkage) are here assessed after the incorporation of supplementary cementitious materials, silica fume, polymer fibres, and the use of ordinary Portland cement (O.P.C) and Portland limestone cement (IL). Mixes with Portland limestone cement show lower drying shrinkage and lower compressive and flexural strength than mixes with ordinary Portland cement, due to the ratio o
... Show MoreBackground: The Epstein-Barr virus (EBV) relates to the torch virus family and is believed to have a substantial impact on mortality and perinatal events, as shown by epidemiological and viral studies. Moreover, there have been documented cases of EBV transmission occurring via the placenta. Nevertheless, the specific location of the EBV infection inside the placenta remains uncertain. Methods: The genomic sequences connected to the latent EBV gene and the levels of lytic EBV gene expression in placental chorionic villous cells are examined in this work. A total of 86 placentas from patients who had miscarriage and 54 placentas from individuals who had successful births were obtained for analysis. Results: The research employed QPCR to dete
... Show MoreBiometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show More