The emphasis of Master Production Scheduling (MPS) or tactic planning is on time and spatial disintegration of the cumulative planning targets and forecasts, along with the provision and forecast of the required resources. This procedure eventually becomes considerably difficult and slow as the number of resources, products and periods considered increases. A number of studies have been carried out to understand these impediments and formulate algorithms to optimise the production planning problem, or more specifically the master production scheduling (MPS) problem. These algorithms include an Evolutionary Algorithm called Genetic Algorithm, a Swarm Intelligence methodology called Gravitational Search Algorithm (GSA), Bat Algorithm (BAT), Teaching Learning Based Algorithm and Harmony Search Algorithm (GA, TLBO and HS). This segment of the research constitutes of two parts the first emphasises on the outcome of the five simulation algorithms and then identifies the best, while the second part is about comparing the best with the search algorithm work in 2009, the applicability of BAT Algorithm and Gravitational Search Algorithm (GSABAT) to planning problems, the technique used for calculating master production scheduling, and the very important results and recommendations for future studies
Recognition is one of the basic characteristics of human brain, and also for the living creatures. It is possible to recognize images, persons, or patterns according to their characteristics. This recognition could be done using eyes or dedicated proposed methods. There are numerous applications for pattern recognition such as recognition of printed or handwritten letters, for example reading post addresses automatically and reading documents or check reading in bank.
One of the challenges which faces researchers in character recognition field is the recognition of digits, which are written by hand. This paper describes a classification method for on-line handwrit
... Show MoreThe strong cryptography employed by PGP (Pretty Good Privacy) is one of the best available today. The PGP protocol is a hybrid cryptosystem that combines some of the best features of both conventional and public-key cryptography. This paper aim to improve PGP protocol by combined between the Random Genetic algorithm, NTRU (N-th degree Truncated polynomial Ring Unit) algorithm with PGP protocol stages in order to increase PGP protocol speed, security, and make it more difficult in front of the counterfeiter. This can be achieved by use the Genetic algorithm that only generates the keys according to the Random Genetic equations. The final keys that obtained from Genetic algorithm were observed to be purely random (according to the randomne
... Show MoreNowadays, it is convenient for us to use a search engine to get our needed information. But sometimes it will misunderstand the information because of the different media reports. The Recommender System (RS) is popular to use for every business since it can provide information for users that will attract more revenues for companies. But also, sometimes the system will recommend unneeded information for users. Because of this, this paper provided an architecture of a recommender system that could base on user-oriented preference. This system is called UOP-RS. To make the UOP-RS significantly, this paper focused on movie theatre information and collect the movie database from the IMDb website that provides informatio
... Show More In this research, an adaptive Canny algorithm using fast Otsu multithresholding method is presented, in which fast Otsu multithresholding method is used to calculate the optimum maximum and minimum hysteresis values and used as automatic thresholding for the fourth stage of the Canny algorithm. The new adaptive Canny algorithm and the standard Canny algorithm (manual hysteresis value) was tested on standard image (Lena) and satellite image. The results approved the validity and accuracy of the new algorithm to find the images edges for personal and satellite images as pre-step for image segmentation.
In this paper, the propose is to use the xtreme value distribution as the rate of occurrence of the non-homogenous Poisson process, in order to improve the rate of occurrence of the non-homogenous process, which has been called the Extreme value Process. To estimate the parameters of this process, it is proposed to use the Maximum Likelihood method, Method of Moment and a smart method represented by the Artificial Bee Colony:(ABC) algorithm to reach an estimator for this process which represents the best data representation. The results of the three methods are compared through a simulation of the model, and it is concluded that the estimator of (ABC) is better than the estimator of the maximum likelihood method and method of mo
... Show MoreIn light of increasing demand for energy consumption due to life complexity and its requirements, which reflected on architecture in type and size, Environmental challenges have emerged in the need to reduce emissions and power consumption within the construction sector. Which urged designers to improve the environmental performance of buildings by adopting new design approaches, Invest digital technology to facilitate design decision-making, in short time, effort and cost. Which doesn’t stop at the limits of acceptable efficiency, but extends to the level of (the highest performance), which doesn’t provide by traditional approaches that adopted by researchers and local institutions in their studies and architectural practices, limit
... Show MoreThe logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables. The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate.
... Show MoreThis paper describes the problem of online autonomous mobile robot path planning, which is consisted of finding optimal paths or trajectories for an autonomous mobile robot from a starting point to a destination across a flat map of a terrain, represented by a 2-D workspace. An enhanced algorithm for solving the problem of path planning using Bacterial Foraging Optimization algorithm is presented. This nature-inspired metaheuristic algorithm, which imitates the foraging behavior of E-coli bacteria, was used to find the optimal path from a starting point to a target point. The proposed algorithm was demonstrated by simulations in both static and dynamic different environments. A comparative study was evaluated between the developed algori
... Show MoreAnomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show More