Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.
<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreHuman posture estimation is a crucial topic in the computer vision field and has become a hotspot for research in many human behaviors related work. Human pose estimation can be understood as the human key point recognition and connection problem. The paper presents an optimized symmetric spatial transformation network designed to connect with single-person pose estimation network to propose high-quality human target frames from inaccurate human bounding boxes, and introduces parametric pose non-maximal suppression to eliminate redundant pose estimation, and applies an elimination rule to eliminate similar pose to obtain unique human pose estimation results. The exploratory outcomes demonstrate the way that the proposed technique can pre
... Show MoreA new human-based heuristic optimization method, named the Snooker-Based Optimization Algorithm (SBOA), is introduced in this study. The inspiration for this method is drawn from the traits of sales elites—those qualities every salesperson aspires to possess. Typically, salespersons strive to enhance their skills through autonomous learning or by seeking guidance from others. Furthermore, they engage in regular communication with customers to gain approval for their products or services. Building upon this concept, SBOA aims to find the optimal solution within a given search space, traversing all positions to obtain all possible values. To assesses the feasibility and effectiveness of SBOA in comparison to other algorithms, we conducte
... Show MoreNumerous blood biomarkers are altered in COVID-19 patients; however, no early biochemical markers are currently being used in clinical practice to predict COVID-19 severity. COVID-19, the most recent pandemic, is caused by the SRS-CoV-2 coronavirus. The study was aimed to identify patient groups with a high and low risk of developing COVID-19 using a cluster analysis of several biomarkers. 137 women with confirmed SARS CoV-2 RNA testing were collected and analyzed for biochemical profiles. Two-dimensional automated hierarchy clustering of all biomarkers was applied, and patients were sorted into classes. Biochemistry marker variations (Ferritin, lactate dehydrogenase LDH, D-dimer, and C- reactive protein CRP) have split COVID-19 patien
... Show MoreBackground: COVID-19 has caused a considerable number of hospital admissions in China since December 2019. Many COVID-19 patients experience signs of acute respiratory distress syndrome, and some are even in danger of dying. Objective: to measure the serum levels of D-dimer, Neutrophil-Lymphocyte count ratio (NLR), and neopterin in patients hospitalized with severe COVID-19 in Baghdad, Iraq. And to determine the cut-off values (critical values) of these markers for the distinction between the severe patients diagnosed with COVID‐19 and the controls. Materials and methods: In this case-control study, we collect blood from 89 subjects, 45 were severe patients hospitalized in many Baghdad medical centers who were diagnosed with COVID
... Show MoreThe post-Corona Covid-19 world is not the world before it, the problem of perception of personality traits with two axes: the characteristics of psychological and social compatibility, and the second aspect the mental disorder during the pandemic, and the accompanying precautions and prohibitions during the academic year 2020 AD. The aim of the research is to reveal the perception of the personal characteristics of Bisha University employees (students and faculty) during the Corona Covid-19 pandemic, and to reveal statistically significant differences in the perception of the personality traits of Bisha’s members during the Covid 19 according to the scientific qualification variables (female students -faculty members), marital st
... Show MoreBackground: Arthrogryposis Multiplex congenita is a
rare disorder, characterized by multiple joint deformities
i.e. multiple congenital contractures, with shapelessly
cylindrical limbs and absent skin creases.
Club foot can be the only obvious deformity of this
widespread disorder.
Objective: To assess the most frequent recurrent
deformity after extensive soft-tissue release operations for
arthrogrypotic club foot and its appropriate treatment
regarding combined tendon transfer and bony operations.
Methods: A retrospective study of 14 patients with
arthrogrypotic club foot (28 feet), had been operated on by
multiple soft tissue and bony operations and followed in a
period between January (1993) till
Formulations based on nanomaterials have the ability to reduce the consuming of hazardous pesticides and theirimpact on human health and environment. The present study focused on a comparative investigation of histological effects of nanocapule acetamiprid (NACMP) in vivoand commercial parental bulk form of acetamiprid (ACMP) on albino mice. Nanoformulations of pesticides have the potential to improve food productivity without compromising with the ecosystem. In the present study, nanocapsules containing acetamiprid were prepared from two natural macromolecules, alginate and chitosan. The characterization of the nanocapsules were investigated by Dynamic Light Scattering(DLS), T ransmission Electron Microscopy (TEM) and Atomic force
... Show MoreCOVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in
This paper discusses estimating the two scale parameters of Exponential-Rayleigh distribution for singly type one censored data which is one of the most important Rights censored data, using the maximum likelihood estimation method (MLEM) which is one of the most popular and widely used classic methods, based on an iterative procedure such as the Newton-Raphson to find estimated values for these two scale parameters by using real data for COVID-19 was taken from the Iraqi Ministry of Health and Environment, AL-Karkh General Hospital. The duration of the study was in the interval 4/5/2020 until 31/8/2020 equivalent to 120 days, where the number of patients who entered the (study) hospital with sample size is (n=785). The number o
... Show More