Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.
In this paper a method to determine whether an image is forged (spliced) or not is presented. The proposed method is based on a classification model to determine the authenticity of a tested image. Image splicing causes many sharp edges (high frequencies) and discontinuities to appear in the spliced image. Capturing these high frequencies in the wavelet domain rather than in the spatial domain is investigated in this paper. Correlation between high-frequency sub-bands coefficients of Discrete Wavelet Transform (DWT) is also described using co-occurrence matrix. This matrix was an input feature vector to a classifier. The best accuracy of 92.79% and 94.56% on Casia v1.0 and Casia v2.0 datasets respectively was achieved. This pe
... Show MoreThe massive distribution and development in the digital images field with friendly software, that leads to produce unauthorized use. Therefore the digital watermarking as image authentication has been developed for those issues. In this paper, we presented a method depending on the embedding stage and extraction stag. Our development is made by combining Discrete Wavelet Transform (DWT) with Discrete Cosine Transform (DCT) depending on the fact that combined the two transforms will reduce the drawbacks that appears during the recovered watermark or the watermarked image quality of each other, that results in effective rounding method, this is achieved by changing the wavelets coefficients of selected DWT sub bands (HL or HH), followed by
... Show MoreBackground: Obesity tends to appear in modern societies and constitutes a significant public health problem with an increased risk of cardiovascular diseases.
Objective: This study aims to determine the agreement between actual and perceived body image in the general population.
Methods: A descriptive cross-sectional study design was conducted with a sample size of 300. The data were collected from eight major populated areas of Northern district of Karachi Sindh with a period of six months (10th January 2020 to 21st June 2020). The Figure rating questionnaire scale (FRS) was applied to collect the demographic data and perception about body weight. Body mass index (BMI) used for ass
... Show MoreToday the Genetic Algorithm (GA) tops all the standard algorithms in solving complex nonlinear equations based on the laws of nature. However, permute convergence is considered one of the most significant drawbacks of GA, which is known as increasing the number of iterations needed to achieve a global optimum. To address this shortcoming, this paper proposes a new GA based on chaotic systems. In GA processes, we use the logistic map and the Linear Feedback Shift Register (LFSR) to generate chaotic values to use instead of each step requiring random values. The Chaos Genetic Algorithm (CGA) avoids local convergence more frequently than the traditional GA due to its diversity. The concept is using chaotic sequences with LFSR to gene
... Show MoreABSTRACTBackground: In Medical ethics education, improving medical student’s attitudes toward respecting the right of patients is an essential task. The medical students’ attitude has been affected by social, educational and personality background factors.Objective: To investigate medical student’s attitudes regarding medical ethics courses.Method: The study was conducted in Al-Kindy College of Medicine on academic year (2013 -2014) for the period from January to September. A cross- sectional study design was adopted with a self- administered questionnaire form distributed to medical students in the 5th-6th under graduate grades. The questionnaire consisted of 31 items relevant to student’s opinion about attitudes concerning ethi
... Show MoreBackground: The objective of this in vitro study was to evaluate the vertical marginal fit of crowns fabricated with ZrO2 CAD/CAM, before and after porcelain firing cycles and after glaze cycles. Materials and Methods: An acrylic resin model of a left maxillary first molar was prepared and duplicated to have Nickel-Chromium master die. Ten die stone dies were sent to the CAD/CAM (Amann Girrbach) for crowns fabrication. Marginal gaps along vertical planes were measured at four indentations at the (mid mesial, mid distal, mid buccal, mid palatal) before (Time 0) and after porcelain firing cycles (Time 1) and after glaze cycles (Time 2) using a light microscope at a magnification of ×100. One way ANOVA LSD tests were performed to determine wh
... Show MoreAs computers become part of our everyday life, more and more people are experiencing a
variety of ocular symptoms related to computer use. These include eyestrain, tired eyes, irritation,
redness, blurred vision, and double vision, collectively referred to as computer vision syndrome.
The effect of CVS to the body such as back and shoulder pain, wrist problem and neck pain.
Many risk factors are identified in this paper.
Primary prevention strategies have largely been confined to addressing environmental
exposure to ergonomic risk factors, since to date, no clear cause for this work-related neck pain
has been acknowledged. Today, millions of children use computers on a daily basis. Extensive
viewing of the compute
Copper Telluride Thin films of thickness 700nm and 900nm, prepared thin films using thermal evaporation on cleaned Si substrates kept at 300K under the vacuum about (4x10-5 ) mbar. The XRD analysis and (AFM) measurements use to study structure properties. The sensitivity (S) of the fabricated sensors to NO2 and H2 was measured at room temperature. The experimental relationship between S and thickness of the sensitive film was investigated, and higher S values were recorded for thicker sensors. Results showed that the best sensitivity was attributed to the Cu2Te film of 900 nm thickness at the H2 gas.