Preferred Language
Articles
/
WhjQM5UBVTCNdQwCnSpv
Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets
...Show More Authors

Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.

Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jan 02 2019
Journal Name
Journal Of The College Of Languages (jcl)
Difficulties and Problems in Teaching and Learning Spanish in Particular and Foreign Languages: Las Dificultades en la Enseñanzayel Aprendizaje de Español como Lengua Extranjera (ELE)en Particular ylas Lenguas Extranjeras en General: El Docente no Nativo
...Show More Authors

       This paper aims at providing the teaching staff members with the necessary skills so as to become capable of tackling various situations, and treating daily problems that face students learning Spanish as a Second Language.  This is made as an attempt to make teachers of foreign languages in general acquainted with modern trends of teaching with less complicated methods, specifically in teaching e earlier stages of foreign languages.

Abstracto:

      En el presente trabajo pretendemos dotar al docente no nativo de Lenguas extranjeras, con algunos de los métodos necesari

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
A Cognitive Hybrid Tuning Control Algorithm Design for Nonlinear Path-Tracking Controller for Wheeled Mobile Robot
...Show More Authors

Abstract

This research presents a on-line cognitive tuning control algorithm for the nonlinear controller of path-tracking for dynamic wheeled mobile robot to stabilize and follow a continuous reference path with minimum tracking pose error. The goal of the proposed structure of a hybrid (Bees-PSO) algorithm is to find and tune the values of the control gains of the nonlinear (neural and back-stepping method) controllers as a simple on-line with fast tuning techniques in order to obtain the best torques actions of the wheels for the cart mobile robot from the proposed two controllers. Simulation results (Matlab Package 2012a) show that the nonlinear neural controller with hybrid Bees-PSO cognitive algorithm is m

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 01 2024
Journal Name
Alexandria Engineering Journal
U-Net for genomic sequencing: A novel approach to DNA sequence classification
...Show More Authors

The precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Sep 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
BASES PROOF FOR PERIOD (1.1) FOR CORRELATION CONEFFICIENT
...Show More Authors

مفهوم معامل الارتباط كمقياس يربط بين متغيرين هذا يجلب انتباهنا إلى موضوع الإحصاء في كل المستويات. أكثر من ذلك هناك ثلاث نقاط خاصة هي اعتيادياً نشدد عليها كما يأتي:-

(1 معامل الارتباط هو الدليل المعياري والذي قيمته لا تعتمد على قياسات  

    المتغيرات الأصلية.

 (2قيمته تقع في المدى] 1,1-[ .

&nb

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison for estimation methods for the autoregressive approximations
...Show More Authors

Abstract

      In this study, we compare between the autoregressive approximations (Yule-Walker equations, Least Squares , Least Squares ( forward- backword ) and Burg’s (Geometric and Harmonic ) methods, to determine the optimal approximation to the time series generated from the first - order moving Average non-invertible process, and fractionally - integrated noise process, with several values for d (d=0.15,0.25,0.35,0.45) for different sample sizes (small,median,large)for two processes . We depend on figure of merit function which proposed by author Shibata in 1980, to determine the theoretical optimal order according to min

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Studies In Systems, Decision And Control
The Effect of Using an Accounting Information System Based on Artificial Intelligence in Detecting Earnings Management to Enhance the Sustainability of Economic Units
...Show More Authors

This research aims to clarify the importance of an accounting information system that uses artificial intelligence to detect earnings manipulation. The research problem stems from the widespread manipulation of earning in economic entities, especially at the local level, exacerbated by the high financial and administrative corruption rates in Iraq due to fraudulent accounting practices. Since earning manipulation involves intentional fraudulent acts, it is necessary to implement preventive measures to detect and deter such practices. The main hypothesis of the research assumes that an accounting information system based on artificial intelligence cannot effectively detect the manipulation of profits in Iraqi economic entities. The researche

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Ssrn Electronic Journal
Developing a Predictive Model and Multi-Objective Optimization of a Photovoltaic/Thermal System Based on Energy and Exergy Analysis Using Response Surface Methodology
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Wed Mar 23 2022
Journal Name
Journal Of Educational And Psychological Researches
The effectiveness of a teaching program based on the McCarthy Model (4MAT) in developing creative writing skills and reflective thinking among university students
...Show More Authors

The aim of this study was to determine the effect on using the McCarthy Model (4MAT) for developing creative writing skills and reflective thinking among undergraduate students. The quasi-experimental approach was adopted. And, in order to achieve the study objective, the educational content of Teaching Ethics (Approach 401), for the plan for the primary grades teacher preparation program  was dealt with by using a teaching program based on the McCarthy Model (4MAT) was used.

The study which was done had been based on the academic achievement test for creative writing skills, and the reflective thinking test. The validity and reliability of the study tools were also confirmed. The study was applied to a sample consisting of

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Improving Voltage Stability in Kurdistan Power System in Areas with Deficit Power Production by Rescheduling the Active Power Based on PSS/E Simulation
...Show More Authors

This paper aims to improve the voltage profile using the Static Synchronous Compensator (STATCOM) in the power system in the Kurdistan Region for all weak buses. Power System Simulation studied it for Engineers (PSS\E) software version 33.0 to apply the Newton-Raphson (NR) method. All bus voltages were recorded and compared with the Kurdistan region grid index (0.95≤V ≤1.05), simulating the power system and finding the optimal size and suitable location of Static Synchronous Compensator (STATCOM)for bus voltage improvement at the weakest buses. It shows that Soran and New Koya substations are the best placement for adding STATCOM with the sizes 20 MVAR and 40 MVAR. After adding STATCOM with the sizes [20MVAR and 40MV

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Artificial Neural Network and Latent Semantic Analysis for Adverse Drug Reaction Detection
...Show More Authors

Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (9)
Scopus Crossref