Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.
<p>Vehicular ad-hoc networks (VANET) suffer from dynamic network environment and topological instability that caused by high mobility feature and varying vehicles density. Emerging 5G mobile technologies offer new opportunities to design improved VANET architecture for future intelligent transportation system. However, current software defined networking (SDN) based handover schemes face poor handover performance in VANET environment with notable issues in connection establishment and ongoing communication sessions. These poor connectivity and inflexibility challenges appear at high vehicles speed and high data rate services. Therefore, this paper proposes a flexible handover solution for VANET networks by integrating SDN and
... Show MoreIn this research we prepared shiff bases unilateral claw( benzyl imine aniline ) and Bilateral claw ( benzayal-2-imine phenol ) in high purity reach to 98% , which it's prepared from aromatic amine with aldehydes, it's solid,thermosetting, not dissolved in water in general. Diagnosed prepared article by using infra red spectroscopy (IR) which shows azomethen grop at 1640cm-1 At this diagnosis we suggest tetra headral mechanism in this Circumstances For a reaction.
Background: Nasal obstruction is common in otorhinolaryngology outpatient visitors. The diagnosis of such compliant is by history, clinical examination and diagnostic procedures. Nasal endoscopy and computerized tomography scan are common diagnostic investigations. Nasal obstruction is either anterior or posterior (nasal septal deviations, hypertrophied turbinate pathological cyst, polyps, mass etc), or postnasal obstruction (hypertrophied turbinate, adenoid hypertrophy, nasopharyngeal cyst or nasopharyngeal tumors).
Aim of study: Prospective study to compare endoscopic finding and computerized tomography of nose, paranasal sinuses and postnasal space as diagnostic methods for nasal obstruction and other nose, p
... Show MoreObjective: the aim of this study is to determine the level of students' knowledge about the environmental health.
Methodology: The cross-sectional study was conducted at the College of Health and Medical Technology in Baghdad
city during the period from 1st march till 1st of July 2012. Data was collected by self-recording of a previously designed
questionnaire to obtain socio-demographic information such as (age, gender, department, year of grade).
Results: The highest rate of students were in the 2nd year followed by the 3rd year, highest rate of students had low
level of knowledge followed by intermediate level of knowledge, while lowest rate of students on had high level of
knowledge .Females had higher level of know
Abstract
The research problem focuses on studying the interest of the Medical City Department of the Ministry of Health in improving the creative thinking skills of the administrative leadership through parallel & comprehensive thinking according to the of six thinking hats strategy. The research sample consisted of (170) administrative leaders in the upper & middle organizational levels, The questionnaire was used as a main tool for data collection, In addition to the observation & Interview, The research sought to answer the following questions: What is the extent to which the administrative leadership (Tpp & middle) in the organization investigated the concept of the six thinkin
... Show More