Reservoir characterization is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling. This comprehensive research paper delves into the complex interplay of rock materials, rock formation techniques, and geological modeling techniques for improving reservoir quality. The research plays an important role dominated by petrophysical factors such as porosity, shale volume, water content, and permeability—as important indicators of reservoir properties, fluid behavior, and hydrocarbon potential. It examines various rock cataloging techniques, focusing on rock aggregation techniques and self-organizing maps (SOMs) to identify specific and
... Show MoreCommunication of the human brain with the surroundings became reality by using Brain- Computer Interface (BCI) based mechanism. Electroencephalography (EEG) being the non-invasive method has become popular for interaction with the brain. Traditionally, the devices were used for clinical applications to detect various brain diseases but with the advancement in technologies, companies like Emotiv, NeuoSky are coming up with low cost, easily portable EEG based consumer graded devices that can be used in various application domains like gaming, education etc as these devices are comfortable to wear also. This paper reviews the fields where the EEG has shown its impact and the way it has p
Mental disorders (MDs) are a common problem in Primary Health Care Centers (PHCCs). Many people with serious MDs are challenged by symptoms and disabilities that result from the disease and by stereotypes and prejudice due to misconceptions about mental illness. This study aims at evaluating the knowledge, and attitude toward mental health concepts and services and causes of the reluctance to seek those services among people attending PHCCs. A descriptive cross-sectional study was conducted. The random sampling technique was used to include (10) of Directorates of Health (DoHs) coverage north, middle, and south of Iraq. The study was executed in (50) selected PHCs, (5) PHCCs in each DoH involved randomly selected (30) people attending th
... Show MoreSupport Vector Machines (SVMs) are supervised learning models used to examine data sets in order to classify or predict dependent variables. SVM is typically used for classification by determining the best hyperplane between two classes. However, working with huge datasets can lead to a number of problems, including time-consuming and inefficient solutions. This research updates the SVM by employing a stochastic gradient descent method. The new approach, the extended stochastic gradient descent SVM (ESGD-SVM), was tested on two simulation datasets. The proposed method was compared with other classification approaches such as logistic regression, naive model, K Nearest Neighbors and Random Forest. The results show that the ESGD-SVM has a
... Show MoreThe objective of this research paper is two-fold. The first is a precise reading of the theoretical underpinnings of each of the strategic approaches: "Market approach" for (M. Porter), and the alternative resource-based approach (R B V), advocates for the idea that the two approaches are complementary. Secondly, we will discuss the possibility of combining the two competitive strategies: cost leadership and differentiation. Finally, we propose a consensual approach that we call "dual domination".
This article showcases the development and utilization of a side-polished fiber optic sensor that can identify altered refractive index levels within a glucose solution through the investigation of the surface Plasmon resonance (SPR) effect. The aim was to enhance efficiency by means of the placement of a 50 nm-thick layer of gold at the D-shape fiber sensing area. The detector was fabricated by utilizing a silica optical fiber (SOF), which underwent a cladding stripping process that resulted in three distinct lengths, followed by a polishing method to remove a portion of the fiber diameter and produce a cross-sectional D-shape. During experimentation with glucose solution, the side-polished fiber optic sensor revealed an adept detection
... Show MoreIn this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.
Background: Coronavirus, which causes respiratory illness, has been a public health issue in recent decades. Because the clinical symptoms of infection are not always specific, it is difficult to expose all suspects to qualitative testing in order to confirm or rule out infection as a test. Methods: According to the scientific studies and investigations, seventy-three results of scientific articles and research were obtained using PubMed, Medline, Research gate and Google Scholar. The research keywords used were COVID-19, coronavirus, blood parameters, and saliva. Results: This review provides a report on the changes in the blood and saliva tests of those who are infected with the COVID-19.COVID-19 is a systemic infection that has
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
A cut-off low is a closed low with a low value of geopotential height at the upper atmospheric levels that has been fully detached (cut-off) from the westerly flow and move independently. A cut-off low causes extreme rainfall events in the mid-latitudes regions. The main aim of this paper is to investigate the cut-off low at 500 hPa over Iraq from a synoptic point of view and the behavior of geopotential height at 500 hPa. To examine the association of the cut-off low at 500 hPa with rainfall events across Iraq, two case studies of heavy rainfall events from different times were conducted. The results showed that the cut-off low at 500 hPa with a low value of geopotential height will strengthen the low-pressure system at the surface, lea
... Show More