Background: Cutaneous leishmaniasis (CL) is a neglected disease in tropical countries, including Iraq. Several studies have sought to examine chemotherapies for leishmaniasis treatment but most of them are of toxic and/or undesirable side effect, therefore, the need for investigating new fewer toxic therapies is essential. Aim of study: In this study, the cytotoxic effect of Artemisinin (ART), a novel herbal compound, was screened against the two forms, promastigotes and amastigotes, of the Iraqi isolate of Leishmania tropica, the causative agent of Baghdad boil. Material and methods: Different concentrations (1000, 500, 250, 125, 62.5, 31.25, 15.6 and 7.8) µM of Artemisinin were screened to investigate the leishmanicidal activity of the herbal compound against the two forms of the parasite along three times of follow up (24, 48, 72) hour using MTT cytotoxicity assay. Results: The results showed that growth rate and cell viability were significantly decreased at all studied concentrations. The IC50 was measured after 72 hours of follow up and was 2.625 µM and 2.636 µM for promastigotes and amastigotes, respectively. Conclusion: These findings approved the leishmanicidal efficacy of Artemisinin against the of L. tropica and can be further studied to screen its effectiveness in vivo for exploring a safer herbal drug for treatment of cutaneous leishmaniasis.
The purpose of this study to synthesize and characterize silver nanoparticles using phenolic compounds obtained from Camellia sinensis, to test the antibacterial properties of biosynthesized nanoparticles on the formation of biofilms in multidrug-resistant Pseudomonas aeruginosa. Ten isolates of P. aeruginosa were obtained from the Genetic Engineering and Biotechnology Institute laboratories of the University of Baghdad. By using the VITEK-2 system and culturing the isolates on cetrimide agar, the diagnosis was confirmed. Camellia sinensis silver nanoparticles (CAgNPs) were created using an extract of the plant's aqueous and methanolic leaves. Based on the results of the nanoparticle synthesis, spherical nanoparticles that may be single or
... Show MoreThe main aim of this study was to molecular identification and determine the antagonistic impact of rhizosphere Trichoderma spp. against some phytopathogenic fungi, including (Magnaporthe grisea) pyricularia oryzae, Rhizoctonia solani and Macrophomina phasolina. Four Trichoderma isolates were isolated from rhizosphere soils of the different host plants in different locations of Egyptian governorates. The morphological characterization of isolated Trichoderma as well as using of (ITS1-5.8S-ITS2) ribosomal gene sequence acquisition and data analyses. By comparing the results of DNA sequences of ITS region, the fungi represented one isolate were positively identified as T. asperellum (1 isolate T1) and one as T. longibrachiatum (1 isolate T2)
... Show MoreThis study was aimed to produce AuNPs biologically using Klebsiella pneumoniae and study their synergistic effect with some antibiotics.Technologies of nanoparticles are quick and are employed in many applications in biomedicine. The potential of metallic nanoparticle as an anti-microbial agent is greatly investigated which considered as an alternative method to reduce the challenges of multi-drug resistance microbes. The present study discusses the novel approach to synthesize nanoparticles involving eco-friendly synthesis of gold nanoparticles using Klebsiella pneumoniae and study their effect as antimicrobial spectrum .Also study synergism effect of gold nanoparticles with antibiotic against Acinetobacter baumannii. These approac
... Show MoreNon-thermal or cold plasma create many reactive species and charged particles when brought into contact with plant extracts. The major constituents involve reactive oxygen species, reactive nitrogen species and plasma ultra-violets. These species can be used to synthesize biologically important nanoparticles. The current study addressed the effect of the green method-based preparation approach on the volumetric analysis of Zn nanoparticles. Under different operating conditions, the traditional thermal method and the microwave method as well as the plasma generation in dielectric barrier discharge reactor were adopted as a preparation approach in this study. The results generally show that the type of method used plays an important rol
... Show MoreNon-thermal or cold plasma create many reactive species and charged particles when brought into contact with plant extracts. The major constituents involve reactive oxygen species, reactive nitrogen species and plasma ultra-violets. These species can be used to synthesize biologically important nanoparticles. The current study addressed the effect of the green method-based preparation approach on the volumetric analysis of Zn nanoparticles. Under different operating conditions, the traditional thermal method and the microwave method as well as the plasma generation in dielectric barrier discharge reactor were adopted as a preparation approach in this study. The results generally show that the type of method used plays an important role in d
... Show MoreOver the past few decades, the health benefits are under threat as many commonly used antibiotics have become less and less effective against certain illnesses not only because many of them produce toxic reactions but also due to the emergence of drug-resistant bacteria. The clinical use of a combination of antibiotic therapy for Pseudomonas aeruginosa infections is probably more effective than monotherapy. The present study aims to estimate the antibacterial and antibiofilm activity of Conocarpus erectus leaves extracts against multi-drug resistant P. aeruginosa isolated from different hospitals in Baghdad city. One hundred fifty different clinical specimens were collected from patients from September 2021 to January 2022. All samples were
... Show MoreCocoon of larva