Moisture-induced damage is a serious problem that severely impairs asphaltic pavement and affects road serviceability. This study examined numerous variables in asphalt concrete mixtures to assess their impact on moisture damage resistance. Mix design parameters such as the asphalt content (AC) and aggregate passing sieve No. 4 (PNo. 4) were considered as variables during this study. Additionally, hydrated lime (HL) was utilized as a partial substitute for limestone dust (LS) filler at 1.5% by weight of the aggregate in asphalt concrete mixtures for the surface layer. This study also investigated the potential enhancement of traditional asphalt binders and mixtures by adding nano-additives, specifically nano-silica oxide (NS) and nano-titanium dioxide (NT), at rates ranging from 0% to 6% by weight of the asphalt binder. To quantify the moisture damage resistance of the asphalt concrete mixes, two types of laboratory tests were employed: the tensile strength ratio (TSR) and the index of retained strength (IRS). The former characterizes moisture damage using tensile strength, whereas the latter uses compression strength. The physical properties of the asphalt binder, such as its penetration, softening point, and ductility, were also evaluated to identify the effects of the nanomaterials. The results indicated that variations in the mix design variables significantly affected the moisture damage resistance of the asphalt concrete mixtures. The maximum improvement values were obtained at the optimum asphalt content (OAC) and PNo. 4 (mid-range + 6%) with TSR values of 80.45 and 82.46 and IRS values of 74.39 and 77.14, respectively. Modifying asphalt concrete mixtures with 1.5% HL resulted in improved moisture resistance compared with mixtures without HL (0% HL) at each PNo. 4 level, reaching superior performance at PNo. 4 (mid-range + 6%) by 4.58% and 3.96% in the TSR and IRS tests, respectively. Additionally, both NS and NT enhanced the physical properties of the asphalt binder, leading to substantial enhancements in asphalt concrete mixture performance against moisture damage. A 6% dosage of NS and NT showed the best performance, with NS performing slightly better than NT. TSR was increased by 14.72 and 11.55 and IRS by 15.60 and 12.75, respectively, with 6% NS and NT compared with mixtures without nanomaterials (0% NM).
This research is addressing the effect of different ferrocene concentration (0.00, 2.15x10-3, 4.30x10-3, 8.60x10-3, and 12.9x10-3) on the bulk free radical polymerization of methyl methacrylate monomer in benzene using benzoyl peroxide as initiator. The polymerization was conducted at 60º C under free oxygen atmosphere. The resulting polymers were characterized by FTIR. The results were compared with the presence and absence of ferrocene at 10% conversion. The %conversion was 3.04% with no ferrocene present in the polymerization medium and its increase to 9.06 with a first lowest ferrocene concentration added, i.e. 2.15 x10-3mol/l. This was positively reflected on the poly(methyl methacrylate) molecular weight measured by viscosity techniq
... Show MoreThe current investigation examines the combined impacts of ultrasonic radiation and hydrogen donors on the viscosity of heavy crude oil. The impact of exposure time, power, duty cycle, and temperature on the viscosity of Iraqi heavy crude oil with 20.32 API was studied. Also, the viscosity of the oil samples, which were mixed with a hydrogen donor (decalin) and subjected to ultrasonic treatment under optimal conditions, was examined to evaluate the combined impact of ultrasonic radiation and hydrogen donor on the viscosity of crude oil. The viscosity experienced a decrease of 52.34% at 2 min of irradiation, 360 W ultrasonic power, 0.8 duty cycle, 35 ⁰C, and 8vol% decalin. To validate the outcomes of the experiments, asphaltene content, s
... Show MoreObjective(s): The aim of this study is to compare the impact strength of a heat cured denture-base acrylic resin
reinforced with metal wire and glass fibers.
Methodology: Forty five specimens were prepared from pink heat cure acrylic resin. Specimens were grouped into;
group-I (control group) which consists of 15 specimens with no reinforcement, group-II which consists of 15 specimens
reinforced with metal wire, and group-III consists of 15 specimens reinforced with glass fibers. Specimens were tested
by using charpy impact machine.
Results: The result showed that there was a highly significant difference in impact strength value among the testing
groups at (P < 0.001).
Conclusion: The impact str
... Show MorePurpose: studying and analyzing the nature of uncertainty as part of strategy formulation, through analyzing the uncertainty faced by managers in the modern business environment characterized by high complexity and dynamism, though developing of an idea about the uncertainty cases and how enable the mind to understand these cases.
Methodology: It was the use of inductive and analytical approach, in order to study the accumulation of knowledge towards development areas that could contribute to strengthening the strategy formulation.
Findings: Mentoring the future will not make the success for business organization but thought business organization ability to developing share mental
... Show MoreThe concept of forming the living space in the American strategic thought has an
important position it is regarded as an strategic movement that it supports the American
United States with the huge capabilities in its own concern that enables it to approach of
American administration , we find that of different historical periods it works to establish that
the geopolitical dimension which is accompanied with the ability of American response for
the evens that in its own turn enables the American united states to seize the growing chances
in the global strategic environment This study includes five chapters :
- Chapter one: The idea of living space.
- Chapter two: Geopolitical dimension of living space theory.
-
The effect of different doping ratio (0.3, 0.5, and 0.7) with thickness in the range 300nmand annealed at different temp.(Ta=RT, 473, 573, 673) K on the electrical conductivity and hall effect measurements of AgInTe2thin film have and been investigated AgAlxIn(1-x) Te2 (AAIT) at RT, using thermal evaporation technique all the films were prepared on glass substrates from the alloy of the compound. Electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated as a function of doping. All films consist of two types of transport mechanisms for free carriers. The activation energy (Ea) decreased whereas electrical conductivity increases with increased doping. Results of Hall Effect
... Show More