This research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters were subjected to Kruskal-Wallis test for detecting factors contributing to the degradation of water quality and for eliminating independentvariables that exhibit the highest contribution in p-value. The analysis of results revealed that ANN model was goodin predicting the WQI. The confusion matrix for Artificial Neural Model (NNM) gave almost 96% for training, 85.7%for testing and 100% for holdout. In relation to GIS, six color maps of the river have been constructed to give clearimages of the water quality along the river (PDF) Application of Artificial Neural Network and Geographical Information System Models to Predict and Evaluate the Quality of Diyala River Water, Iraq. Available from: https://www.researchgate.net/publication/346028558_Application_of_Artificial_Neural_Network_and_Geographical_Information_System_Models_to_Predict_and_Evaluate_the_Quality_of_Diyala_River_Water_Iraq [accessed Apr 07 2023].
The matter of handwritten text recognition is as yet a major challenge to mainstream researchers. A few ways deal with this challenge have been endeavored in the most recent years, for the most part concentrating on the English pre-printed or handwritten characters space. Consequently, the need to effort a research concerning to Arabic texts handwritten recognition. The Arabic handwriting presents unique technical difficulties because it is cursive, right to left in writing and the letters convert its shapes and structures when it is putted at initial, middle, isolation or at the end of words. In this study, the Arabic text recognition is developed and designed to recognize image of Arabic text/characters. The proposed model gets a single l
... Show MoreTotal dissolved solids are at the top of the parameters list of water quality that requires investigations for planning and management, especially for irrigation and drinking purposes. If the quality of water is sufficiently predictable, then appropriate management is possible. In the current study, Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) models were used as indicators of water quality and for the prediction of Total Dissolved Solids (TDS) along the Tigris River, in Baghdad city. To build these models five water parameters were selected from the intakes of four water treatment plants on the Tigris River, for the period between 2013 and 2017. The selected water parameters were Total Dissolved Solids (TDS
... Show MoreThe study attempts to assess water quality in Abu-Zirig Marsh which used epiphytic Diatom community for assessing water quality. Many of Diatom indices {Trophic diatom index (TDI), Diatom index (DI), Generic diatom index (GDI) have been used to give qualitative information about the status of the freshwater ecosystem(good, moderate, high pollution). In this study, the epiphytic diatoms on both host aquatic plants Phragmites australis and Typha domengensis were collected from Abu-Zirig Marsh within Thi-Qar Province at three sites in Autumn, 2018 and winter, 2019. Epiphytic diatoms were Identified by the preparation of permanent slides method, some species of epiphytic diatom showed dominance such as Cyclotella menegh
... Show MoreIn this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi
... Show MoreThe time series of statistical methods mission followed in this area analysis method, Figuring certain displayed on a certain period of time and analysis we can identify the pattern and the factors affecting them and use them to predict the future of the phenomenon of values, which helps to develop a way of predicting the development of the economic development of sound
The research aims to select the best model to predict the number of infections with hepatitis Alvairose models using Box - Jenkins non-seasonal forecasting in the future.
Data were collected from the Ministry of Health / Department of Health Statistics for the period (from January 2009 until December 2013) was used
... Show MoreThe aim of this paper is to design suitable neural network (ANN) as an alternative accurate tool to evaluate concentration of Copper in contaminated soils. First, sixteen (4x4) soil samples were harvested from a phytoremediated contaminated site located in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Copper. The performance of the ANN technique was compared with the traditional laboratory inspecting using the training and test data sets. The results of this study show that the ANN technique trained on experimental measurements can be successfully applied to the rapid est
... Show MoreThe study aims to predict Total Dissolved Solids (TDS) as a water quality indicator parameter at spatial and temporal distribution of the Tigris River, Iraq by using Artificial Neural Network (ANN) model. This study was conducted on this river between Mosul and Amarah in Iraq on five positions stretching along the river for the period from 2001to 2011. In the ANNs model calibration, a computer program of multiple linear regressions is used to obtain a set of coefficient for a linear model. The input parameters of the ANNs model were the discharge of the Tigris River, the year, the month and the distance of the sampling stations from upstream of the river. The sensitivity analysis indicated that the distance and discharge
... Show MoreThe most significant water supply, which is the basis of agriculture, industry and human and wildlife needs, is the river. In order to determine its suitability for drinking purposes, this study aims to measure the Water Quality Index (WQI) of the Tigris River in the Salah Al-Din Province (center of Tikrit), north of Baghdad. For ten (9) physio-chemical parameters, namely turbidity, total suspended sediments, PH, electrical conductivity, total dissolved solids, alkalinity, chloride, nitrogen as nitrate, sulphate, and then transported for examination to the laboratory, water samples were collected from 13 locations along the Tigris river. Using the weighted arithmetic index method, the WQI was measured and found to be 105,87 in up-stream, wh
... Show MoreThis study aims to assess the water quality index (WQI) according to the Canadian Council of Ministers of the Environment's Water Quality Index method (CCME WQI). Four locations (measurement stations) are selected along the Tigris River, in Iraq. Two of them are located in the north near Mosul City, (Mosul Dam and Mosul city), and the other two are located in the south near Al-Amarah city, (Ali Garbi and Al-Amarah). The water data collected is for the period 2011 to 2013, including eleven water quality parameters. These are magnesium (Mg+2), calcium (Ca2+), potassium (K+), sodium (Na+), sulfate (SO42-), chloride (Cl-), nitrate (NO3<
... Show MoreThe main aim of image compression is to reduce the its size to be able for transforming and storage, therefore many methods appeared to compress the image, one of these methods is "Multilayer Perceptron ". Multilayer Perceptron (MLP) method which is artificial neural network based on the Back-Propagation algorithm for compressing the image. In case this algorithm depends upon the number of neurons in the hidden layer only the above mentioned will not be quite enough to reach the desired results, then we have to take into consideration the standards which the compression process depend on to get the best results. We have trained a group of TIFF images with the size of (256*256) in our research, compressed them by using MLP for each
... Show More