This is a survey study that presents recent researches concerning factional controllers. It presents several types of fractional order controllers, which are extensions to their integer order counterparts. The fractional order PID controller has a dominant importance, so thirty-one paper are presented for this controller. The remaining types of controllers are presented according to the number of papers that handle them; they are fractional order sliding mode controller (nine papers), fuzzy fractional order sliding mode controller (five papers), fractional order lag-lead compensator (three papers), fractional order state feedback controller (three papers), fractional order fuzzy logic controller (three papers). Finally,
... Show MoreA mathematical method with a new algorithm with the aid of Matlab language is proposed to compute the linear equivalence (or the recursion length) of the pseudo-random key-stream periodic sequences using Fourier transform. The proposed method enables the computation of the linear equivalence to determine the degree of the complexity of any binary or real periodic sequences produced from linear or nonlinear key-stream generators. The procedure can be used with comparatively greater computational ease and efficiency. The results of this algorithm are compared with Berlekamp-Massey (BM) method and good results are obtained where the results of the Fourier transform are more accurate than those of (BM) method for computing the linear equivalenc
... Show MoreIn this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
In this paper we use Bernstein polynomials for deriving the modified Simpson's 3/8 , and the composite modified Simpson's 3/8 to solve one dimensional linear Volterra integral equations of the second kind , and we find that the solution computed by this procedure is very close to exact solution.
In this paper reliable computational methods (RCMs) based on the monomial stan-dard polynomials have been executed to solve the problem of Jeffery-Hamel flow (JHF). In addition, convenient base functions, namely Bernoulli, Euler and Laguerre polynomials, have been used to enhance the reliability of the computational methods. Using such functions turns the problem into a set of solvable nonlinear algebraic system that MathematicaⓇ12 can solve. The JHF problem has been solved with the help of Improved Reliable Computational Methods (I-RCMs), and a review of the methods has been given. Also, published facts are used to make comparisons. As further evidence of the accuracy and dependability of the proposed methods, the maximum error remainder
... Show MoreOne of the main techniques to achieve phase behavior calculations of reservoir fluids is the equation of state. Soave - Redlich - Kwong equation of state can then be used to predict the phase behavior of the petroleum fluids by treating it as a multi-components system of pure and pseudo-components. The use of Soave – Redlich – Kwon equation of state is popular in the calculations of petroleum engineering therefore many researchers used it to perform phase behavior analysis for reservoir fluids (Wang and Orr (2000), Ertekin and Obut (2003), Hasan (2004) and Haghtalab (2011))
This paper presents a new flash model for reservoir fluids in gas – oil se
The investigation of determining solutions for the Diophantine equation over the Gaussian integer ring for the specific case of is discussed. The discussion includes various preliminary results later used to build the resolvent theory of the Diophantine equation studied. Our findings show the existence of infinitely many solutions. Since the analytical method used here is based on simple algebraic properties, it can be easily generalized to study the behavior and the conditions for the existence of solutions to other Diophantine equations, allowing a deeper understanding, even when no general solution is known.
In this work, an explicit formula for a class of Bi-Bazilevic univalent functions involving differential operator is given, as well as the determination of upper bounds for the general Taylor-Maclaurin coefficient of a functions belong to this class, are established Faber polynomials are used as a coordinated system to study the geometry of the manifold of coefficients for these functions. Also determining bounds for the first two coefficients of such functions.
In certain cases, our initial estimates improve some of the coefficient bounds and link them to earlier thoughtful results that are published earlier.