Background: With the start of the current century, increased the interest in the role of the adipose tissue derived substances that named adipokines in the inflammatory diseases of the human being including the inflammatory periodontal disease, but scientific evidences were not clearly demonstrate the association between these adipokines and periodontal pathologies. Materials and Methods: Forty two subjects male only with normal body mass index were selected for the study with an age ranged (30-39 years). Samples were divided into three groups of 14 subjects in each group based on clinical periodontal parameters; clinically healthy gingiva (group I), gingivitis group (group II) and chronic periodontitis patients group (group III), from whom
... Show MoreThis study included isolation of some active materials from Curcuma longa such as tannins, saponins and volatile oils with percentage of 59%, 31%, and 9% respectively. Also the study included the determination of minerals in Curcuma longa such as " Na, Ca and K" using Flame photometer. The concentrations of these minerals were (14 ppm),(10 ppm) and )76 ppm) respectively. The anti-bacterial activity study was performed for the active materials isolated from Curcuma longa against two genus of pathogenic bacteria, Escherichia Coli and Staphylococcus aurous by using agar-well diffusion method. It appeared from this study that all of the extraction have inhibitory effect on bacteria was used. The inhibition zone diameter varies with
... Show MoreThe inverse kinematics of redundant manipulators has infinite solutions by using conventional methods, so that, this work presents applicability of intelligent tool (artificial neural network ANN) for finding one desired solution from these solutions. The inverse analysis and trajectory planning of a three link redundant planar robot have been studied in this work using a proposed dual neural networks model (DNNM), which shows a predictable time decreasing in the training session. The effect of the number of the training sets on the DNNM output and the number of NN layers have been studied. Several trajectories have been implemented using point to point trajectory planning algorithm with DNNM and the result shows good accuracy of the end
... Show MoreIn this research, Fuzzy Analytic Hierarchy Process technique is applied (Fuzzy AHP) which is one of multi-criteria decision making techniques to evaluate the criteria for urban planning projects, the project of developing master plan of Al-Muqdadiyah city to 2035 has been chosen as a case study. The researcher prepared a list of criteria in addition to the authorized departments criteria and previous researches in order to choose optimized master plan according to these criteria. This research aims at employing the foundations of (Fuzzy AHP) technique in evaluating urban planning criteria precisely and flexible. The results of the data analysis to the individuals of the sample who are specialists, in this aspect. The la
... Show MoreThe optical absorption data of Hydrogenated Amorphous Silicon was analyzed using a Dunstan model of optical absorption in amorphous semiconductors. This model introduces disorder into the band-band absorption through a linear exponential distribution of local energy gaps, and it accounts for both the Urbach and Tauc regions of the optical absorption edge.Compared to other models of similar bases, such as the O’Leary and Guerra models, it is simpler to understand mathematically and has a physical meaning. The optical absorption data of Jackson et al and Maurer et al were successfully interpreted using Dunstan’s model. Useful physical parameters are extracted especially the band to the band energy gap , which is the energy gap in the a
... Show MoreThis research presents a new study in reactive distillation by adopting a consecutive reaction . The adopted consecutive reaction was the saponification reaction of diethyl adipate with NaOH solution. The saponification reaction occurs in two steps. The distillation process had the role of withdrawing the intermediate product i.e. monoethyl adipate from the reacting mixture before the second conversion to disodium adipate occurred. It was found that monoethyl adipate appeared successfully in the distillate liquid. The percentage conversion from di-ester to monoester was greatly enhanced (reaching 86%) relative to only 15.3% for the case of reaction without distillation .This means 5 times enhancement . The presence of two layers in both the
... Show MoreThe COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreIn the light of the globalization Which surrounds the business environment and whose impact has been reflected on industrial economic units the whole world has become a single market that affects its variables on all units and is affected by the economic contribution of each economic unit as much as its share. The problem of this research is that the use of Pareto analysis enables industrial economic units to diagnose the risks surrounding them , so the main objective of the research was to classify risks into both internal and external types and identify any risks that require more attention.
The research was based on the hypothesis that Pareto analysis used, risks can be identified and addressed before they occur.
... Show MoreCOVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in