This research investigates the impact of varying concentrations of silver oxide on the structure and morphology of phosphate bioactive glass (PBG). PBGs are gaining popularity as a potential replacement for traditional silicate glasses in biomedical applications due to their adjustable chemical resistance and exceptional bioactivity. Upon examination of the scanning electron microscope of the composites without Ag2O, it was observed that the grains tended to merge together, and the surface particles appeared to be larger than those in composites with Ag2O at concentrations of 0.25, 0.5, and 0.75 wt%. The study found that the diffraction pattern of phosphate bioactive glass composites sintered without Ag2O showed the presence of Strontium di-phosphate and Calcium di-phosphate. The XRD pattern of these composites without Ag2O revealed specific planes that corresponded to both types of di-phosphate. However, when Ag2O was added, a new cubic phase was detected, and the intensity of the calcium and strontium diphosphate increased with higher Ag2O content. The XRD pattern of the composites with Ag2O displayed specific planes that corresponded to Ag2O. In other words, the absence of Ag2O in the composite material led to larger particle sizes and less distinct boundaries between grains. In addition, it has been found that, as the concentration of Ag2O increased from 0 to 0.25, 0.5, and 0.75 wt%, the average crystallite size decreased from 36.2 to 31.7, 31.0, and 32.8 nm, respectively. These results suggest that the addition of Ag2O can effectively reduce the average crystallite size of the composite materials. Also, as the concentration of Ag2O increased from 0 g to 0.5 wt% within the composite material, the average lattice strain increased from 3.41·10-3 to 4.40·10-3. In simpler terms, adding Ag2O to the composite material resulted in a slight increase in the average lattice strain.
The Sr doped La1Ba1-xSrx Ca2Cu4O8.5+δ samples with 0 ≤ x ≤ 0.3 had been prepared using the solid state reaction. The samples were claimed at 800°C for 3hr, palletized and sintered at 860°C for 20hr in air . Dielectric constant and loss by means of capacitance have been investigated with frequencies in the range of 1kHZ to 1MHZ for our samples at room temperature. Also, Shore hardness has been measured. The dielectric constant and loss decrease slightly with the increase of frequency for all compounds. Additionally, the partial substitution of Sr+2 into Ba+2 sites never have effect on the dielectric properties. X-ray diffraction (XRD) analysis showed a tetragonal structure and the
... Show MoreIn This paper, CuO thin films having different thickness (250, 300 , 350 and 400) nm were deposited on glass substrates by thermal vacuum evaporator. The thermal oxidation of this evaporated film was done in heated glass at temperature (300 in air at one hour. The study of X-ray diffraction investigated all the exhibit polycrystalline nature with monoclinic crystal structure include uniformly grains. Thin film’s internal structure topographical and optical properties. Furthermore, the crystallization directions of CuO (35.54 , 38.70 ) can be clearly observed through an X-ray diffraction analysis XRD, Atomic Force Microscope AFM (topographic image) showed that the surface Characteristics , thin films crystals grew with increases in either
... Show MoreIn this paper the effect of thermal annealing on the structural and optical properties of Antimony Selenide (Sb2Se3) is investigated. Sb2Se3 powder is evaporated on clean amorphous glass substrates at room temperature under high vacuum pressure (4.5×10-6 mbar) to form thin films. The structural investigation was done with the aid of X-ray diffraction (XRD) and atomic force microscopy (AFM). The amorphous to polycrystalline transformation of these thin films was shown by X-ray diffraction analysis after thermal annealing. These films' morphology is explained. (UV-Vis ) spectra in ranges from 300 to 1100 nm was used to examine the optical properties of the films .The absorption coefficient and optical energy gap of the investigated films are
... Show MoreIn this research, the structural and optical properties were studied for Bi2O3 and Bi2O3: Al thin films with different doping ratios ( 1, 2, 3 ) % , which were prepared by thermal evaporation technique under vacuum , with thickness ( 450 ± 20 ) nm deposited on glass substrates at room temperature ( 300 ) K , Structural measurements by ( XRD) techniques demonstrated that all samples prepared have polycrystalline structure with tetragonal structure and a preferred orientation [ 201 ] the &n
... Show MoreCdS and CdTe thin films were thermally deposited onto glass substrate. The CdCl2 layer was deposited onto CdS surface. These followed by annealing for different duration times to modify the surface and interface of the junction. The diffraction patterns showed that the intensity of the peaks increased with the CdCl2/annealed treatment, and the grain sizes are increased after CdCl2/annealed treatment
In this study, the number of times of heating of olive oil was studied. For the different refineries, the study was conducted using a temperature of 300K and for several times to determine the validity of the olive oil which is used for frying purposes after it was used for more than once times. It was found that there were significant changes in the behavior of the photophysical behavior like absorption and emission; there are changes in the nature and composition of the olive oil molecule, which makes it not useful for human use. The number of heating times was ten. The heating times also showed significant changes in the nature of the oil, such as color, taste, density, and smell.
In this research we studied the structural and optical properties of (CdTe) thin films which have been prepared by thermal evaporation deposition method on the glass substrate at R.T with thickness (450  25) nm., as a function of doping ratio with copper element in (1,3,5) % rate .The structure measurement by X-ray diffraction (XRD) analyses shows that the single phase of (CdTe) with polycrystalline structure with a preferred orientation [111]. The optical measurement shows that the (CdTe) films have a direct energy gap, and they decrease with the increase of doping ratio reaching to 5% . The optical constants are investigated and calculated, such as absorpti
... Show MoreLow- and medium-carbon structural steel components face random vibration and dynamic loads (like earthquakes) in many applications. Thus a modification to improve their mechanical properties, essentially damping properties, is required. The present study focuses on improving and developing these properties, significantly dampening properties, without losing the other mechanical properties. The specimens used in the present study are structural steel ribbed bar ISO 6935 subjected to heating temperatures of (850, 950, and 1050) ˚C, and cooling schemes of annealing, normalizing, sand, and quenching was selected. The damping properties of the specimens were measured experimentally with the area under the curve for the loadi
... Show More