This research investigates the impact of varying concentrations of silver oxide on the structure and morphology of phosphate bioactive glass (PBG). PBGs are gaining popularity as a potential replacement for traditional silicate glasses in biomedical applications due to their adjustable chemical resistance and exceptional bioactivity. Upon examination of the scanning electron microscope of the composites without Ag2O, it was observed that the grains tended to merge together, and the surface particles appeared to be larger than those in composites with Ag2O at concentrations of 0.25, 0.5, and 0.75 wt%. The study found that the diffraction pattern of phosphate bioactive glass composites sintered without Ag2O showed the presence of Strontium di-phosphate and Calcium di-phosphate. The XRD pattern of these composites without Ag2O revealed specific planes that corresponded to both types of di-phosphate. However, when Ag2O was added, a new cubic phase was detected, and the intensity of the calcium and strontium diphosphate increased with higher Ag2O content. The XRD pattern of the composites with Ag2O displayed specific planes that corresponded to Ag2O. In other words, the absence of Ag2O in the composite material led to larger particle sizes and less distinct boundaries between grains. In addition, it has been found that, as the concentration of Ag2O increased from 0 to 0.25, 0.5, and 0.75 wt%, the average crystallite size decreased from 36.2 to 31.7, 31.0, and 32.8 nm, respectively. These results suggest that the addition of Ag2O can effectively reduce the average crystallite size of the composite materials. Also, as the concentration of Ag2O increased from 0 g to 0.5 wt% within the composite material, the average lattice strain increased from 3.41·10-3 to 4.40·10-3. In simpler terms, adding Ag2O to the composite material resulted in a slight increase in the average lattice strain.
The inelastic C2 form factors and the charge density distribution (CDD) for 58,60,62Ni and 64,66,68Zn nuclei has been investigated by employing the Skyrme-Hartree-Fock method with (Sk35-Skzs*) parametrization. The inelastic C2 form factor is calculated by using the shape of Tassie and Bohr-Mottelson models with appropriate proton and neutron effective charges to account for the core-polarization effects contribution. The comparison of the predicted theoretical values was conducted with the available measured data for C2 and CDD form factors and showed very good agreement.
Titanium alloys are broadly used in the medical and aerospace sectors. However, they are categorized within the hard-to-machine alloys ascribed to their higher chemical reactivity and lower thermal conductivity. This aim of this research was to study the impact of the dry-end-milling process with an uncoated tool on the produced surface roughness of Ti6Al4V alloy. This research aims to study the impact of the dry-end milling process with an uncoated tool on the produced surface roughness of Ti6Al4V alloy. Also, it seeks to develop a new hybrid neural model based on the training back propagation neural network (BPNN) with swarm optimization-gravitation search hybrid algorithms (PSO-GS
Poly methyl methacrylate PMMA polymer could be considered the main material that used mostly in the recent years in denture base fabrication. It commonly known by it is poor strength properties such as low impact strength. The aim of the present research was to enhance the performance of PMMA denture base through the addition of two kind of nanoparticles (nano particles that selected from artificial and natural sources). Nano -particles from both Al2O3 and crushed peanut Peel were used for comparing purposes.Various weight fraction used in this study for both kinds of the additive (1%, 2% and 3%). Moreover, in this work a study and evaluation in impact strength (I.S.) value were done before and after immersion. The new prepared nanocompo
... Show MoreABSTRACT
The effect of adding raw bacteriocin produced by Lactobacillus bulgaricus to cheese curd at an amount of (5 and 10 and 15) mL/kg cheese as a biological preservative to prolong the shelf life of soft cheese, in addition to the control treatment, knowing that each 1 mL of bacteriocin filter contains 15 units/ mL of bacteriocin. The results of the physicochemical, microbial and sensory tests for cheese stored at refrigerator temperature for a period (zero) to (21) d of adding bacteriocin showed the superiority of the treatment of cheese added to 15 mL/kg cheese of bacteriocin over the rest of the other treatments during the storage period, wh
... Show MoreThe emergence of mixed matrix membranes (MMMs) or nanocomposite membranes embedded with inorganic nanoparticles (NPs) has opened up a possibility for developing different polymeric membranes with improved physicochemical properties, mechanical properties and performance for resolving environmental and energy-effective water purification. This paper presents an overview of the effects of different hydrophilic nanomaterials, including mineral nanomaterials (e.g., silicon dioxide (SiO2) and zeolite), metals oxide (e.g., copper oxide (CuO), zirconium dioxide (ZrO2), zinc oxide (ZnO), antimony tin oxide (ATO), iron (III) oxide (Fe2O3) and tungsten oxide (WOX)), two-dimensional transition (e.g., MXene), metal–organic framework (MOFs), c
... Show MoreIn the present work, the focusing was on the study of the x-ray diffraction, dielectric constant, loses dielectric coefficient, tangent angle, alter- natively conductivity and morphology of PET/BaTio3. The PET/BaTio3 composite was prepared for polyethylene terephthalate PET polymer composite containing 0, 10, 20, 30, 40, 50, and 60 wt. % from Barium titanate BaTi03 powder. The composite of two materials leads to form mixing solution and hot-pressing method. The effect of BaTio3 on the structure and dielectric properties with morphology was studied on PET matrix polymer using XRD, LCR meter and SEM.