Preferred Language
Articles
/
WEJNxZkBMeyNPGM3Vri_
Enhancing Image Classification Using a Convolutional Neural Network Model
...Show More Authors

In recent years, with the rapid development of the current classification system in digital content identification, automatic classification of images has become the most challenging task in the field of computer vision. As can be seen, vision is quite challenging for a system to automatically understand and analyze images, as compared to the vision of humans. Some research papers have been done to address the issue in the low-level current classification system, but the output was restricted only to basic image features. However, similarly, the approaches fail to accurately classify images. For the results expected in this field, such as computer vision, this study proposes a deep learning approach that utilizes a deep learning algorithm. In this research, a proposed model based on a Convolutional Neural Network (CNN) which is a machine learning tool that can be used for the automatic classification of images. The model is concerned with the classification of images, and for this, it employs the COREL Image dataset (Corel Gallery Image Dataset) as a reference. The images in the dataset used for training are harder than the classification of the images since they need more computational resources. In the experimental part, training the images using the CNN network achieved 98.52% accuracy, proving that the model has high accuracy in the classification of images.

Crossref
View Publication
Publication Date
Wed Jan 01 2020
Journal Name
Advances In Science, Technology And Engineering Systems Journal
Bayes Classification and Entropy Discretization of Large Datasets using Multi-Resolution Data Aggregation
...Show More Authors

Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Apr 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Classification & Evaluation of Evidence of deprivation in Iraq (2009) by using Cluster analysis
...Show More Authors

       The study aimed to reach the best rating for the views and variables in the totals characterized by qualities and characteristics common within each group and distinguish them from aggregates other for the purpose of distinguishing between Iraqi provinces which suffer from deprivation, for the purpose of identifying the status of those provinces in the early allowing interested parties and regulators to intervene to take appropriate corrective action in a timely manner. Style has been used cluster analysis Cluster analysis to reach the best rating to those totals from the provinces that suffer from problems, where the provinces were classified, based on the variables (Edu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Civil And Environmental Engineering
Prediction of the Delay in the Portfolio Construction Using Naïve Bayesian Classification Algorithms
...Show More Authors
Abstract<p>Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo</p> ... Show More
Scopus (9)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sat Jul 20 2024
Journal Name
Sumer Journal For Pure Science
Classify the Nutritional Status of Iraqi children under Five Years Using Fuzzy Classification
...Show More Authors

View Publication Preview PDF
Publication Date
Wed Nov 02 2016
Journal Name
Australian Journal Of Basic And Applied Sciences
Full synchronization of 2$\times$ 2 optocouplers network using LEDs
...Show More Authors

The synchronization of a complex network with optoelectronic feedback has been introduced theoretically, with use of 2×2 oscillators network; each oscillator considered is an optocoupler (LED coupled with photo-detector). Fixing the bias current (δ) and increasing the feedback strength (Ԑ) of each oscillator, the dynamical sequence like chaotic and periodic mixed mode oscillations has been observed. Synchronization of unidirectionally coupled of light emitting diodes network has been featured when coupling strength equal to 1.7×10-4. The transition between non-synchronization and synchronization states by means of the spatio-temporal distribution has been investigated.

Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Human Pose Estimation Algorithm Using Optimized Symmetric Spatial Transformation Network
...Show More Authors

Human posture estimation is a crucial topic in the computer vision field and has become a hotspot for research in many human behaviors related work. Human pose estimation can be understood as the human key point recognition and connection problem. The paper presents an optimized symmetric spatial transformation network designed to connect with single-person pose estimation network to propose high-quality human target frames from inaccurate human bounding boxes, and introduces parametric pose non-maximal suppression to eliminate redundant pose estimation, and applies an elimination rule to eliminate similar pose to obtain unique human pose estimation results. The exploratory outcomes demonstrate the way that the proposed technique can pre

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Traitement Du Signal
A Comprehensive Review on Machine Learning Approaches for Enhancing Human Speech Recognition
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine
Comparison study of classification methods of intramuscular electromyography data for non-human primate model of traumatic spinal cord injury
...Show More Authors

Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A Suggested Model for Using a Students Attendance Management Information Systems/ A Case Study In Lebanese French University/ Erbil
...Show More Authors

This study aims to design unified  electronic information system to manage students attendance in Lebanese French university/Erbil, as a system that simplifies the process of entering and counting the students absence, and generate absence reports to expel students who passed  the acceptable limit of being absent, and by that we can replace the traditional way of  using papers to count absence,  with  a complete electronically system for managing students attendance, in a way that makes the results accurate and unchangeable by the students.

            In order to achieve the study's objectives, we designed an information syst

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 30 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
Promising Gains of 5G Networks with Enhancing Energy Efficiency Using Improved Linear Precoding Schemes
...Show More Authors

Scopus (2)
Scopus Crossref