This study delves into the properties of the associated act V over the monoid S of sinshT. It examines the relationship between faithful, finitely generated, and separated acts, as well as their connections to one-to-one and onto operators. Additionally, the correlation between acts over a monoid and modules over a ring is explored. Specifically, it is established that functions as an act over S if and only if functions as module, where T represents a nilpotent operator. Furthermore, it is proved that when T is onto operator and is finitely generated, is guaranteed to be finite-dimensional. Prove that for any bounded operator the following, is acting over S if and only if is a module where T is a nilpotent operator, is a faithful act over S, where T is any bounded linear operator, if T is any bounded operator, then is separated, if is separated act over S, Then T is injective, if a basis K = {vj, j} for V, then every element w of can be composed as =(pn (T) + . v, for some v in V, and put T as similar to any operator from to and V as a finite dimensional normed space, then is Noetherian act over S if S is Noetherian.
The definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then A is called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
The main purpose of this paper is to study feebly open and feebly closed mappings and we proved several results about that by using some concepts of topological feebly open and feebly closed sets , semi open (- closed ) set , gs-(sg-) closed set and composition of mappings.
Let R be a commutative ring with identity, and let M be a unity R-module. M is called a bounded R-module provided that there exists an element x?M such that annR(M) = annR(x). As a generalization of this concept, a concept of semi-bounded module has been introduced as follows: M is called a semi-bounded if there exists an element x?M such that . In this paper, some properties and characterizations of semi-bounded modules are given. Also, various basic results about semi-bounded modules are considered. Moreover, some relations between semi-bounded modules and other types of modules are considered.
In this paper we introduce a new class of operators on Hilbert space. We
call the operators in this class, n,m- powers operators. We study this class
of operators and give some of their basic properties.
In this research paper, we explain the use of the convexity and the starlikness properties of a given function to generate special properties of differential subordination and superordination functions in the classes of analytic functions that have the form in the unit disk. We also show the significant of these properties to derive sandwich results when the Srivastava- Attiya operator is used.
In this essay, we utilize m - space to specify mX-N-connected, mX-N-hyper connected and mX-N-locally connected spaces and some functions by exploiting the intelligible mX-N-open set. Some instances and outcomes have been granted to boost our tasks.
The aim of the paper is to compute projective maximum distance separable codes, -MDS of two and three dimensions with certain lengths and Hamming weight distribution from the arcs in the projective line and plane over the finite field of order twenty-five. Also, the linear codes generated by an incidence matrix of points and lines of were studied over different finite fields.
Since 1980s, the study of the extending module in the module theory has been a major area of research interest in the ring theory and it has been studied recently by several authors, among them N.V. Dung, D.V. Huyn, P.F. Smith and R. Wisbauer. Because the act theory signifies a generalization of the module theory, the author studied in 2017 the class of extending acts which are referred to as a generalization of quasi-injective acts. The importance of the extending acts motivated us to study a dual of this concept, named the coextending act. An S-act MS is referred to as coextending act if every coclosed subact of Ms is a retract of MS where a subact AS of MS is said to be coclosed in MS if whenever the Rees factor â„ is small in th
... Show MoreThe dispersion relation of linear quantum ion acoustic waves is derivate according to a fluid approach that depends on the kinetic description of the systems of charged particles model. We discussed the dispersion relation by changing its parameters and graphically represented. We found through graphs that there is full agreement with previous studies on the subject of interest. That motivates us to discuss the dispersion relation of waves depending on the original basic parameters that implicitly involved in the relationship which change the relationship by one way or another, such as electron Fermi temperature and the density at equilibrium state.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise Lindelöf and locally Lindelöf topological spaces, which are generalizations of will-known concepts: Lindelöf topological space (1) "A topological space X is called a Lindelöf space if for every open cover of X has a countable subcover" and locally Lindelöf topological space (1) "A topological space X is called a locally Lindelöf space if for every point x in X, there exist a nbd U of x such that the closure of U in X is Lindelöf space". Either the new concepts are: "A fibrewise topological space X over B is called a fibrewise Lindelöf if the projection function p : X→B is Lindelöf" and "The fibrewise topological space X over B
... Show More