في هذا البحث تم تحضير المركبات المعدنية الجديدة لأيونات البلاتين (الرباعي) و الذهب (الثلاثي) مع ليكاند قاعدة مانخ جديد مشتق من السيبروفلوكساسين . تم استخدام المعقدات بعد ذلك كمصدر لتحضير جزيئات عن طريق ترسيب المعقدات على مسام دقائق السيليكا النانوية. Si/Au2O3 Si/PtO2 تم تشخيص الليكاند و معقداته باستخدام أطياف الاشعة تحت الحمراء، الاشعة فوق البنفسجية ، التحليل الدقيق للعناصر، التوصيلية المولارية و درجة الانصهارمن النتائج تبين ان الصيغة العامة للمعقدات هي : ، والشكل ثماني السطوح n= 1,2, L= ليكاند قاعدة مانخ, M = Au(III) ,Pt(IV), [M(L)2Cl2] Cl(n).H2O تم تشخيص التركيب الكيميائي و المورفولوجي لدقائق الاكاسيد النانوية باستخدام أطياف الاشعة تحت الحمراء، حيود الاشعة السينية ، المجهر الالكتروني الماسح ، المجهر الالكتروني النافذ و مجهر القوة الذرية. في الخطوة التالية ، تم اختبار الليكاند و معقداته و الاكاسيد النانوية كعامل مضاد للسرطان لخطوط خلايا سرطان الثدي . اظهرت النتائج أن المعقدات والاكاسيد النانوية واعدة أكثر بأن تستخدم كمضادات للسرطان في المستقبل خاصة عند التراكيز العالية .
The preparation of the phenanthridine derivative compound was achieved by adopting an efficient one-pot synthetic approach. The condensation of an ethanolic mixture of benzaldehyde, cyclohexanone and ammonium acetate in a 2:1:1 mole ratio resulted in the formation of the title compound. Analytical and spectroscopic techniques were used to confirm the nature of the new compound. A mechanism for the formation of the phenanthridine moiety that is based on three steps has been suggested
In this study, synthesis of polymer Nanocomposites through the blending of prepared polymers with polyvinyl alcohol (a synthetic polymer) or chitosan (a natural polymer) then mixed with nano oxide silica by many steps. The new compound [I] was obtained via reaction of 3,3’-dimethoxybiphenyl-4,4’-diamine as starting material with malic anhydride in DMF then treatment with ammonium persulfate (NH4 )2 S2 O8 (as the initiator) in order to produce polymer [II]. Also, we prepared new polymers [III-V] by using the same starting material (3,3’-dimethoxybiphenyl-4,4’-diamine) with glutaric acid or adipic acid or isophthalic acid in DMF and pyridine. In this study, new polymer blending [VI-IX] and [X-XIII] were synthesized from a prepared pol
... Show MoreIntroduction: Carrier-based gutta-percha is an effective method of root canal obturation creating a 3-dimensional filling; however, retrieval of the plastic carrier is relatively difficult, particularly with smaller sizes. The purpose of this study was to develop composite carriers consisting of polyethylene (PE), hydroxyapatite (HA), and strontium oxide (SrO) for carrier-based root canal obturation. Methods: Composite fibers of HA, PE, and SrO were fabricated in the shape of a carrier for delivering gutta-percha (GP) using a melt-extrusion process. The fibers were characterized using infrared spectroscopy and the thermal properties determined using differential scanning calorimetry. The elastic modulus and tensile strength tests were dete
... Show MoreSnS has been widely used in photoelectric devices due to its special band gap of 1.2-1.5 eV. Here, we reported on the fabrication of SnS nanosheets and the effect of synthesis condition together with heat treatment on its physical properties. The obtained band gap of the SnS nanosheets is in the rage of 1.37-1.41 eV. It was found that the photo-current density of a thin film comprised of SnS nanosheets could be enhanced significantly by annealing treatment. The maximum photo-current density of the stack structure of FTO/SnS/CdS/Pt was high as 389.5 mu A cm(-2), rendering its potential application in high efficiency solar hydrogen production.
By unusual method for separating two isomers of a substituted nitro-coumarin using a soxhlet extractor and in controlling temperature to get a selective nitration reaction, several new Schiff base coumarins were synthesized from nitro coumarins as starting material, which were reduced by Fe in glacial acetic acid to produce corresponding amino coumarin derivatives. Then the latter was reacted with different aromatic aldehydes to produce the desired Schiff bases derivatives. After characterization by Fourier transform infrared (FT-IR), Proton nuclear magnetic resonance (1HNMR) and Carbon-13 nuclear magnetic resonance (C-NMR), all these compounds were evaluated as potential Antimicrobial and Antioxidant Agents.
The work includes synthesis of 1,2,3-triazoles via click conditions and using the microwave irradiation starting from two synthesized azides: 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl azide (5) and perfluorobutylethyl azide (10) and different terminal alkynes. It also includes microwave enhanced synthesis of tetrazoles via the reaction of two synthesized azides i.e., perfluorobutylethyl azide (10) and 1,5-diazidopentane (13) with benzoyl cyanide. Most of the prepared compounds have been characterized by: TLC, FT-IR, 1H NMR, 13C NMR, LC-MS and microelemental analysis
A new derivative of PAM, acrylamide was copolymerized with succinic anhydride, and the reaction product reacted with three dyes, anthocyanin, bromophenol, and thymol. The prepared polymers were characterized by X-ray diffraction, FT-IR and UV-visible spectroscopy, proton nuclear magnetic resonance spectrometry, and thermal analysis. FT-IR spectroscopy showed the disappearance of two bands near 3450 and 3380 cm-1 for the stretching vibrations of the primary amine which indicates for the formation of amides. The UV-photolysis of aqueous solutions of different concentrations of the polymers was studied. Polyacrylamide-g-succinic anhydride showed an increase in polymerization under light. An increase of ~ 50% was observed for a 200 mg/L
... Show MoreThe present work involved four steps: First step include reaction of acrylamide ,N-?-Methylen-bis(acryl amide) and N-tert Butyl acryl amide with poly acryloyl chloride in the presence of triethyl amine (Et3N) as catalyst, the second step include homopolymerization of all products of the first step by using benzoyl peroxide(BPO) as initiator in (80-90)Co in the presence of Nitrogen gas(N2). In the third step the poly acrylimide which prepare in second step was convert into potassium salt by using alcoholic potassium hydroxide solution. Fourth step include Alkylation of the prepared polymeric salts in third step by react it with different alkyl halides(benzyl chloride, allylbromide , methyl iodide) by using DMF as solvent for(10-12) hours.
... Show More