Preferred Language
Articles
/
WBZe2IcBVTCNdQwCRmpx
Numerical Modeling and Analysis of Strengthened Steel–Concrete Composite Beams in Sagging and Hogging Moment Regions
...Show More Authors

Strengthening of composite beams is highly needed to upgrade the capacities of existing beams. The strengthening methods can be classified as active or passive techniques. Therefore, the main purpose of this study is to provide detailed FE simulations for strengthened and unstrengthened steel–concrete composite beams at the sagging and hogging moment regions with and without profiled steel sheeting. The developed models were verified against experimental results from the literature. The verified models were used to present comparisons between the effect of using external post-tensioning and CFRP laminates as strengthening techniques. Applying external post-tensioning at the sagging moment regions is more effective because of the exhibited larger eccentricity. In the form of an initial camber and compressive stresses in the bottom flange prior to loading, this reasonable eccentricity induces reverse loading on the reinforced beams, reducing the net tensile stress induced during loading. Using CFRP laminates on the concrete slab for continuous composite beams is more effective in enhancing the beam capacity in comparison with using the external post-tension. However, reductions in the beam ductility were obtained.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Dec 22 2020
Journal Name
Modern Applications Of Geotechnical Engineering And Construction Geotechnical Engineering And Construction
Numerical Modeling of Honeycombed Geocell Reinforced Soil
...Show More Authors

Shallow foundations have been commonly used to transfer load to soil layer within the permissible limits of settlement based on the bearing capacity of the soil. For most practical cases, the shape of the shallow foundation is of slight significance. Also, friction resistance forces in the first layers of soils are negligible due to non-sufficient surrounding surface area and compaction conditions. However, the bearing capacity of a shallow foundation can be increased by several techniques. Geocell is one of the geosynthetic tool applied mainly to reinforce soil. This study presents a numerical approach of honeycombed geocell steel panels reinforcing the sandy soil under shallow foundation, and several parameters are investigated such as th

... Show More
Preview PDF
Crossref (13)
Crossref
Publication Date
Sat Apr 07 2018
Journal Name
Civil Engineering Journal
Behavior of Precast Prestressed Concrete Segmental Beams
...Show More Authors

The structural behavior of Segmental Precast Post-tensioned Reinforced Concrete (SPPRC) beams largely depends on the behavior of the joints that connect between the segments. In this research, series of static tests were carried out to investigate the behavior of full-scale SPPRC beams with different types of epoxy-glued joint configurations; multi-key joint, single key, and plain key joint. The reference specimen was monolithically casted beam and the other specimens were segmental beams with five segments for each one. The general theme from the experimental results reflects an approximate similarity in the behavior of the four beams with slight differences. Due to the high tensile strength of the used epoxy in comparison to concr

... Show More
Crossref (8)
Clarivate Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Finite Element Analysis of Raft Foundation under Coupled Moment
...Show More Authors

Due to wind wave actions, ships impacts, high-speed vehicles and others resources of loading, structures such as high buildings rise bridge and electric transmission towers undergo significant coupled moment loads. In this study, the effect of increasing the value of coupled moment and increasing the rigidity of raft footing on the horizontal deflection by using 3-D finite element using ABAQUS program. The results showed that the increasing the coupled moment value leads to an increase in lateral deflection and increase in the rotational angle (α◦). The rotational angle increases from (0.014, 0.15 to 0.19) at coupled moment (120 kN.m), (0.29, 0.31 and 0.49) at coupled moment (240 kN.m) and (0.57, 0.63 and 1.03) at cou

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
NUMERICAL INVESTIGATION OF STATIC AND DYNAMIC STRESSES IN SPUR GEAR MADE OF COMPOSITE MATERIAL
...Show More Authors

In this current work, Purpose; to clearly the fundamental idea for constructing a design and
investigation of spur gear made of composite material its comes from the combination of (high
speeds, low noise, oil-les running, light weight, high strength, and more load capability)
encountered in modern engineering applications of the gear drives, when the usual metallic gear
cannot too overwhelming these combinations.
An analyzing of stresses and deformation under static and dynamic loading for spur gear tooth
by finite element method with isoparametric eight-nodded in total of 200 brick element with 340
nods in three degree of freedom per node was selected for this analysis. This is responsible for the
catastropic fa

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Sep 24 2019
Journal Name
Journal Of Engineering
Flexural Performance of Laced Reinforced Concrete Beams under Static and Fatigue Loads
...Show More Authors

This paper introduces experimental results of eighteen simply supported reinforced concrete beams of cross sections ( ) and length 3000 mm to study the effect of lacing reinforcement on the performance of such beams under static and fatigue loads. Twelve reinforced concrete beams (two of them are casted with vertical shear reinforcement used as control beams) are tested under four points bending loading with displacement control technique and six laced reinforced concrete beams were exposed to high frequency (10 Hz) by fixing the fatigue load in each cycle. Three parameters are used in the designed beams, which are: lacing bar diameter (4mm, 6mm, and 8mm), lacing bar inclination angle to horizontal , and lacing steel rat

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Nov 05 2021
Journal Name
Journal Of Architectural Environment & Structural Engineering Research
Strength & Conduct of Reinforced Concrete Corner Joint under Negative Moment Effect
...Show More Authors

The aim of our study is to reveal the effect of steel reinforcement details,tensile steel reinforcement ratio, compressed reinforcing steel ratio,reinforcing steel size, corner joint shape on the strength of reinforcedconcrete Fc' and delve into it for the most accurate details and concreteconnections about the behavior and resistance of the corner joint ofreinforced concrete, Depending on the available studies and sources inaddition to our study, we concluded that each of these effects had a clearrole in the behavior and resistance of the corner joint of reinforced concreteunder the influence of the negative moment and yield stress. A studyof the types of faults that can be reinforced angle joints obtains detailsand conditions of c

... Show More
View Publication
Crossref (14)
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Engineering
Parameters Affecting the Strength and Behavior of RC Dapped-End Beams: A Numerical Study
...Show More Authors

The finite element method has been used in this paper to investigate the behavior of precast reinforced concrete dapped-ends beams (DEBs) numerically. A parametric investigation was performed on an experimental specimen tested by a previous researcher to show the effect of numerous parameters on the strength and behavior of RC dapped-end beams. Reinforcement details and steel arrangement, the influence of concrete compressive strength, the effect of inclined load, and the effect of support settlement on the strength of dapped-ends beams are examples of such parameters. The results revealed that the dapped-end reinforcement arrangement greatly affects the behavior of dapped end beam. The failure load decreases by 25% when

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Oct 01 2019
Journal Name
2019 12th International Conference On Developments In Esystems Engineering (dese)
Structural Modeling of Cross-Frame Behavior in Steel Girder Bridges
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Civil Engineering Journal
Behavior of Post-Tensioned Concrete Girders Subject to Partially Strand Damage and Strengthened by NSM-CFRP Composites
...Show More Authors

Studies on the flexural behavior of post-tensioned beams subjected to strand damage and strengthened with near-surface mounted (NSM) technique using carbon fiber-reinforced polymer (CFRP) are limited and fail to examine the effect of CFRP laminates on strand strain and strengthening efficiency systematically. Furthermore, a design approach for UPC structures in existing design guidelines for FRP strengthening techniques is lacking. Hence, the behavior of post-tensioned beams strengthened with NSM-CFRP laminates after partial strand damage is investigated in this study. The testing program consists of seven post-tensioned beams strengthened by NSM-CFRP laminates with three partial strand damage ratios (14.3% symmetrical damage, 14.3%

... Show More
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Geotechnical Engineering And Sustainable Construction
Dynamic Response of Slender Reinforced Concrete Columns Strengthened by Using CFRP and Circularization Subjected to Seismic Excitation
...Show More Authors

View Publication
Crossref