Introduction: Dental pulp tissue contains many undifferentiated mesenchymal cells, which have the ability to differentiate into different specialized cells. Induced pluripotent stem cells have been developed by various growth factors. The present study was designed to evaluate the effect of application of a combination BMP2/TGF β1 as capped material for traumatic pulp in osteoporotic rat. Materials and Methods: Twelfth female rats (6 normal rat and other 6 osteoporotic rat)., their maxillary anterior teeth subjected to mechanical traumatized pulptomy, the left tooth has speared without treatment, while the right tooth capped with application of 0.5 μl of BMP2 and 0.5μl of TGF β1 .Evaluation of histological changes includes scoring of pulp inflammation and scoring of morphology and thickness of dentin bridge were estimated for all study groups. Results: Histological examination of tooth with pulptomy capped by BMP-2&TGF β1 for both normal and osteoporotic rat showed formation of reparative dentin bridge and minimal inflammatory response with a significant differences value in comparison to control. Conclusion: The study concludes that application of a combination of BMP-2&TGFβ1 enhanced tooth repair in osteoporotic rat.
In this publication, several six coordinate Co(III)-complexes are reported. The reaction of 2,3-butanedione monoxime with ethylenediamine or o-phenylenediamine in mole ratios of 2:1 gave the tetradentate imine-oxime ligands diaminoethane-N,N`-bis(2-butylidine-3-onedioxime) H2L1 and o-phenylenediamine-N,N`-bis(2-butylidine-3-onedioxime), respectively. The reaction of H2L1 and H2L2 with Co(NO3)2, and the amino acid co-ligands (glycine or serine) resulted in the formation of the required complexes. Upon complex formation, the ligands behave as a neutral tetradantate species, while the amino acid co-ligand acts as a monobasic species. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectro
... Show MoreIn this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.