Preferred Language
Articles
/
VxfENY8BVTCNdQwCsmKB
Differential Evolution algorithm for linear frequency modulation radar signal denoising
...Show More Authors

Signal denoising is directly related to sample estimation of received signals, either by estimating the equation parameters for the target reflections or the surrounding noise and clutter accompanying the data of interest. Radar signals recorded using analogue or digital devices are not immune to noise. Random or white noise with no coherency is mainly produced in the form of random electrons, and caused by heat, environment, and stray circuitry loses. These factors influence the output signal voltage, thus creating detectable noise. Differential Evolution (DE) is an effectual, competent, and robust optimisation method used to solve different problems in the engineering and scientific domains, such as in signal processing. This paper looks at the feasibility of using the differential evolution algorithm to estimate the linear frequency modulation received signal parameters for radar signal denoising. The results gave high target recognition and showed feasibility to denoise received signals.

Scopus Crossref
View Publication
Publication Date
Fri Nov 15 2024
Journal Name
Iraqi Journal Of Science
The Impact of Geomagnetic Storms on the Ionospheric Critical Frequency in the Northern and Southern Mid-Latitude Hemisphere Regions
...Show More Authors

In this work, the impact of different geomagnetic storm events on the plasma-sphere layer (ionosphere layer) over the northern and southern hemisphere regions was investigated during solar cycle 23. To grasp the influence of geomagnetic storms on the behavior and variation of the critical frequency parameter of the F2 ionospheric layer (foF2), five geomagnetic storms (classified as great, severe, and strong), with Disturbance storm time (Dst) values <-100 nT were chosen. Four stations located in different mid-latitude regions in northern and southern hemispheres were designated, the northern stations are: Millstone Hill (42.6° N, 288.50° W) and Rome (41.90° N, 12.50° E) and the southern stations are: Port Stanley (-51.60° S,

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Tue Sep 05 2023
Journal Name
Migration Letters
The Impact of Climate Change on the Increase in the Frequency of Drought in the Eastern Region of Iraq
...Show More Authors

Aim: This abstract aims to highlight the critical nature of climate change as a pressing challenge facing humanity in the 21st century. It underscores the severe consequences it poses to essential facets of human existence, including water and energy resources, agricultural production, and the broader environmental systems. Method: The abstract primarily utilizes a descriptive approach to emphasize the impact of climate change on the Middle East, particularly the Arab region. It relies on a review of existing knowledge and data related to climate change and its effects on ecosystems and drought patterns. Results: The abstract outlines the direct and indirect repercussions of climate change on human life and the environment. It draws atten

... Show More
View Publication Preview PDF
Publication Date
Fri May 05 2017
Journal Name
International Journal Of Science And Research (ijsr)
Automatic brain tumor segmentation from MRI images using region growing algorithm
...Show More Authors

LK Abood, RA Ali, M Maliki, International Journal of Science and Research, 2015 - Cited by 2

View Publication
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
CTJ: Input-Output Based Relation Combinatorial Testing Strategy Using Jaya Algorithm
...Show More Authors

Software testing is a vital part of the software development life cycle. In many cases, the system under test has more than one input making the testing efforts for every exhaustive combination impossible (i.e. the time of execution of the test case can be outrageously long). Combinatorial testing offers an alternative to exhaustive testing via considering the interaction of input values for every t-way combination between parameters. Combinatorial testing can be divided into three types which are uniform strength interaction, variable strength interaction and input-output based relation (IOR). IOR combinatorial testing only tests for the important combinations selected by the tester. Most of the researches in combinatorial testing

... Show More
View Publication
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
3-D Packing in Container using Teaching Learning Based Optimization Algorithm
...Show More Authors

The paper aims to propose Teaching Learning based Optimization (TLBO) algorithm to solve 3-D packing problem in containers. The objective which can be presented in a mathematical model is optimizing the space usage in a container. Besides the interaction effect between students and teacher, this algorithm also observes the learning process between students in the classroom which does not need any control parameters. Thus, TLBO provides the teachers phase and students phase as its main updating process to find the best solution. More precisely, to validate the algorithm effectiveness, it was implemented in three sample cases. There was small data which had 5 size-types of items with 12 units, medium data which had 10 size-types of items w

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Ieee Access
Speech Enhancement Algorithm Based on Super-Gaussian Modeling and Orthogonal Polynomials
...Show More Authors

View Publication
Scopus (44)
Crossref (43)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Computer And Communications
Pathfinding in Strategy Games and Maze Solving Using A* Search Algorithm
...Show More Authors

View Publication
Crossref (17)
Crossref
Publication Date
Wed Apr 10 2019
Journal Name
Engineering, Technology &amp; Applied Science Research
Content Based Image Clustering Technique Using Statistical Features and Genetic Algorithm
...Show More Authors

Text based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.

... Show More
View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Facial Emotion Images Recognition Based On Binarized Genetic Algorithm-Random Forest
...Show More Authors

Most recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (7)
Scopus Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
MR Brain Image Segmentation Using Spatial Fuzzy C- Means Clustering Algorithm
...Show More Authors

conventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation. 

View Publication Preview PDF
Crossref (1)
Crossref