Preferred Language
Articles
/
VxfENY8BVTCNdQwCsmKB
Differential Evolution algorithm for linear frequency modulation radar signal denoising
...Show More Authors

Signal denoising is directly related to sample estimation of received signals, either by estimating the equation parameters for the target reflections or the surrounding noise and clutter accompanying the data of interest. Radar signals recorded using analogue or digital devices are not immune to noise. Random or white noise with no coherency is mainly produced in the form of random electrons, and caused by heat, environment, and stray circuitry loses. These factors influence the output signal voltage, thus creating detectable noise. Differential Evolution (DE) is an effectual, competent, and robust optimisation method used to solve different problems in the engineering and scientific domains, such as in signal processing. This paper looks at the feasibility of using the differential evolution algorithm to estimate the linear frequency modulation received signal parameters for radar signal denoising. The results gave high target recognition and showed feasibility to denoise received signals.

Scopus Crossref
View Publication
Publication Date
Sun Nov 01 2020
Journal Name
International Journal Of Nonlinear Analysis And Applications
Two Efficient Methods For Solving Non-linear Fourth-Order PDEs
...Show More Authors

This paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.

Scopus (9)
Scopus
Publication Date
Fri Jan 01 2021
Journal Name
Annals Of Pure And Applied Mathematics
Linear Regression Model Using Bayesian Approach for Iraqi Unemployment Rate
...Show More Authors

In this paper we used frequentist and Bayesian approaches for the linear regression model to predict future observations for unemployment rates in Iraq. Parameters are estimated using the ordinary least squares method and for the Bayesian approach using the Markov Chain Monte Carlo (MCMC) method. Calculations are done using the R program. The analysis showed that the linear regression model using the Bayesian approach is better and can be used as an alternative to the frequentist approach. Two criteria, the root mean square error (RMSE) and the median absolute deviation (MAD) were used to compare the performance of the estimates. The results obtained showed that the unemployment rates will continue to increase in the next two decade

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
The Modified Quadrature Method for solving Volterra Linear Integral Equations
...Show More Authors

In this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.

View Publication Preview PDF
Crossref
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Neuro-Self Tuning Adaptive Controller for Non-Linear Dynamical Systems
...Show More Authors

In this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 01 2008
Journal Name
2008 First International Conference On The Applications Of Digital Information And Web Technologies (icadiwt)
Hybrid canonical genetic algorithm and steepest descent algorithm for optimizing likelihood estimators of ARMA (1, 1) model
...Show More Authors

This paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conc

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Pertanika Journal Of Science & Technology
Modified Kohonen network algorithm for selection of the initial centres of Gustafson-Kessel algorithm in credit scoring
...Show More Authors

Credit risk assessment has become an important topic in financial risk administration. Fuzzy clustering analysis has been applied in credit scoring. Gustafson-Kessel (GK) algorithm has been utilised to cluster creditworthy customers as against non-creditworthy ones. A good clustering analysis implemented by good Initial Centres of clusters should be selected. To overcome this problem of Gustafson-Kessel (GK) algorithm, we proposed a modified version of Kohonen Network (KN) algorithm to select the initial centres. Utilising similar degree between points to get similarity density, and then by means of maximum density points selecting; the modified Kohonen Network method generate clustering initial centres to get more reasonable clustering res

... Show More
Scopus (9)
Scopus
Publication Date
Fri Dec 01 2023
Journal Name
Bulletin Of Electrical Engineering And Informatics
A comparative study of Gaussian mixture algorithm and K-means algorithm for efficient energy clustering in MWSN
...Show More Authors

Wireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Tue Mar 01 2011
Journal Name
Al-khwarizmi Engineering Journal
Noise Removal of ECG Signal Using Recursive Least Square Algorithms
...Show More Authors

This paper shows an approach for Electromyography (ECG) signal processing based on linear and nonlinear adaptive filtering using Recursive Least Square (RLS) algorithm to remove two kinds of noise that affected the ECG signal. These are the High Frequency Noise (HFN) and Low Frequency Noise (LFN). Simulation is performed in Matlab. The ECG, HFN and LFN signals used in this study were downloaded from ftp://ftp.ieee.org/uploads/press/rangayyan/, and then the filtering process was obtained by using adaptive finite impulse response (FIR) that illustrated better results than infinite impulse response (IIR) filters did.

View Publication Preview PDF
Publication Date
Fri Oct 01 2021
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Color image compression based on spatial and magnitude signal decomposition
...Show More Authors

<p>In this paper, a simple color image compression system has been proposed using image signal decomposition. Where, the RGB image color band is converted to the less correlated YUV color model and the pixel value (magnitude) in each band is decomposed into 2-values; most and least significant. According to the importance of the most significant value (MSV) that influenced by any simply modification happened, an adaptive lossless image compression system is proposed using bit plane (BP) slicing, delta pulse code modulation (Delta PCM), adaptive quadtree (QT) partitioning followed by an adaptive shift encoder. On the other hand, a lossy compression system is introduced to handle the least significant value (LSV), it is based on

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jun 01 2008
Journal Name
Baghdad Science Journal
The Writer Authentication by Using Syllables Frequency
...Show More Authors

An approach is depended in the recent years to distinguish any author or writer from other by analyzing his writings or essays. This is done by analyzing the syllables of writings of an author. The syllable is composed of two letters; therefore the words of the writing are fragmented to syllables and extract the most frequency syllables to become trait of that author. The research work depend on analyzed the frequency syllables in two cases, the first, when there is a space between the words, the second, when these spaces are ignored. The results is obtained from a program which scan the syllables in the text file, the performance is best in the first case since the sequence of the selected syllables is higher than the same syllables in

... Show More
View Publication Preview PDF
Crossref