Facial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) for classification purpose. The results obtained from the different groups are then fused using Naïve Bayes classifier to make the final decision regards the emotion class. Different tests were performed using Surrey Audio-Visual Expressed Emotion (SAVEE) database and the achieved results showed that the system gives the desired accuracy (100%) when fusion decisions of the facial groups. The achieved result outperforms state-of-the-art results on the same database.
A total global dominator coloring of a graph is a proper vertex coloring of with respect to which every vertex in dominates a color class, not containing and does not dominate another color class. The minimum number of colors required in such a coloring of is called the total global dominator chromatic number, denoted by . In this paper, the total global dominator chromatic number of trees and unicyclic graphs are explored.
This research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB
... Show MoreBusiness organizations have faced many challenges in recent times, most important of which is information technology, because it is widely spread and easy to use. Its use has led to an increase in the amount of data that business organizations deal with an unprecedented manner. The amount of data available through the internet is a problem that many parties seek to find solutions for. Why is it available there in this huge amount randomly? Many expectations have revealed that in 2017, there will be devices connected to the internet estimated at three times the population of the Earth, and in 2015 more than one and a half billion gigabytes of data was transferred every minute globally. Thus, the so-called data mining emerged as a
... Show MoreKE Sharquie, AA Noaimi, HG Mahmood, SM Al-Ogaily, Journal of Cosmetics, Dermatological Sciences and Applications, 2015 - Cited by 6
A simple low-cost approach at various exposure times was utilized to generate cold plasma in the aim to fabricate AuNPs. UV-Visible spectra and X-ray diffraction were used to characterize the nanoparticles (XRD). Surface Plasmon resonance was observed in the synthesized AuNPs at 530, 540, and 533 nm. For all samples, the patterns of XRD show very intensive peaks implying the fcc crystalline structure of AuNPs. The average crystallite size of AuNPs is ranging between 20-30 nm. The observation of morphology by FESEM revealed the spherical formation of AuNPs. Doses of 100 and 200 ppm of AuNPs were adapted to investigate their effect on the blood-mixture with and without a 20-second of cold plasma exposure. The WBC components in the blood
... Show MoreActivities associated with mining of uranium have generated significant quantities of waste materials containing uranium and other toxic metals. A qualitative and quantitative study was performed to assess the situation of nuclear pollution resulting from waste of drilling and exploration left on the surface layer of soil surrounding the abandoned uranium mine hole located in the southern of Najaf province in Iraq state. To measure the specific activity, twenty five surface soil samples were collected, prepared and analyzed by using gamma- ray spectrometer based on high counting efficiency NaI(Tl) scintillation detector. The results showed that the specific activities in Bq/kg are 37.31 to 1112.47 with mean of 268.16, 0.28 to 18.57 with
... Show MoreThe Al Mishraq site has been the subject of many scientific studies for the period before and
after the fire in 2003. Five visits to the site were conducted twice in 2003 for general fact-finding, twice
in 2004, and once in 2005 for detailed sampling and monitoring. Desk-based research and laboratory analysis of soil and water samples results indicate that surface water and groundwater pollution from Al Mishraq site was significant at the time of its operation. The primary pollution source was the superheated water injection process, while the principal receptor is the River Tigris. Now that the plant is idle, this source is absent. Following the June 2003 sulphur fire, initial investigations indicate that short damage to
vegeta