In this paper, we investigate and characterize the effects of multi-channel and rendezvous protocols on the connectivity of dynamic spectrum access networks using percolation theory. In particular, we focus on the scenario where the secondary nodes have plenty of vacant channels to choose from a phenomenon which we define as channel abundance. To cope with the existence of multi-channel, we use two types of rendezvous protocols: naive ones which do not guarantee a common channel and advanced ones which do. We show that, with more channel abundance, even with the use of either type of rendezvous protocols, it becomes difficult for two nodes to agree on a common channel, thereby, potentially remaining invisible to each other. We model this invisibility as a Poisson thinning process and show that invisibility is even more pronounced with channel abundance. Following the disk graph model, we represent the multiple channels as parallel edges in a graph and build a multi-layered graph (MLG) in R2. In order to study the connectivity, we show how percolation occurs in the MLG by coupling it with a typical discrete percolation. Using a Boolean model and the MLG, we study both cases of primaries' absence and presence. For both cases, we define and characterize connectivity of the secondary network in terms of the available number of channels, deployment densities, number of simultaneous transmissions per node, and communication range. When primary users are absent, we derive the critical number of channels which maintains supercriticality of the secondary network. When primary users are present, we characterize and analyze the connectivity for all the regions: channel abundance, optimal, and channel deprivation. For each region we show the requirement and the outcome of using either type of rendezvous techniques. Moreover, we find the tradeoff between deployment-density versus rendezvous probability which results in a connected network. Our results can be used to decide on the goodness of any channel rendezvous algorithm by computing the expected resultant connectivity. They also provide a guideline for achieving connectivity using minimal resources.
I n this paper ,we 'viii consider the density questions associC;lted with the single hidden layer feed forward model. We proved that a FFNN with one hidden layer can uniformly approximate any continuous function in C(k)(where k is a compact set in R11 ) to any required accuracy.
However, if the set of basis function is dense then the ANN's can has al most one hidden layer. But if the set of basis function non-dense, then we need more hidden layers. Also, we have shown that there exist localized functions and that there is no t
... Show MoreThis paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show MoreThis work presents the simulation of a Low density Parity Check (LDPC) coding scheme with
multiuserMulti-Carrier Code Division Multiple Access (MC-CDMA) system over Additive White
Gaussian Noise (AWGN) channel and multipath fading channels. The decoding technique used in
the simulation was iterative decoding since it gives maximum efficiency with ten iterations.
Modulation schemes that used are Phase Shift Keying (BPSK, QPSK and 16 PSK), along with the
Orthogonal Frequency Division Multiplexing (OFDM). A 12 pilot carrier were used in the estimator
to compensate channel effect. The channel model used is Long Term Evolution (LTE) channel with
Technical Specification TS 25.101v2.10 and 5 MHz bandwidth including the chan
The research aims to identify the new reality of Iraq’s international relations through the news
coverage carried out by Al-Iraqiya TV since the size and nature of the coverage indicate the extent
to which these relations have reached. The research problem is summarized by the main question
(what is the size and nature of news coverage of Iraq’s international relations in the Iraqi News
Channel?).
This research is considered a descriptive research, as the researchers used the survey method and the
content analysis method through a partial confinement of the research community consisting of the
main news broadcast for one programmatic period. The content analysis form that was subjected to
evaluation was design
The two dimensional steady, combined forced and natural convection in vertical channel is
investigated for laminar regime. To simulate the Trombe wall channel geometry properly, horizontal
inlet and exit segments have been added to the vertical channel. The vertical walls of the channel are
maintained at constant but different temperature while horizontal walls are insulated. A finite
difference method using up-wind differencing for the nonlinear convective terms, and central
differencing for the second order derivatives, is employed to solve the governing differential
equations for the mass, momentum, and energy balances. The solution is obtained for stream
function, vorticity and temperature as dependent variables
sensor sampling rate (SSR) may be an effective and crucial field in networked control systems. Changing sensor sampling period after designing the networked control system is a critical matter for the stability of the system. In this article, a wireless networked control system with multi-rate sensor sampling is proposed to control the temperature of a multi-zone greenhouse. Here, a behavior based Mamdany fuzzy system is used in three approaches, first is to design the fuzzy temperature controller, second is to design a fuzzy gain selector and third is to design a fuzzy error handler. The main approach of the control system design is to control the input gain of the fuzzy temperature controller depending on the cur
... Show MoreThe problem of poverty and deprivation constitute a humanitarian tragedy and its continuation may threaten the political achievements reached by the State. Iraq, in particular, and although he is one of the very rich countries due to availability of huge economic wealth, poverty indicators are still high. In addition, the main factor in the decline in the standard of living due to the weakness of the government's performance in the delivery of public services of water, electricity and sanitation. Thus, the guide for human development has been addressed which express the achievements that the state can be achieved both on a physical level or on the human level, so in order to put appropriate strategies and policies aimed at elimin
... Show MoreThis study aims to analyze the flow migration of individuals between Iraqi governorates using real anonymized data from Korek Telecom company in Iraq. The purpose of this analysis is to understand the connection structure and the attractiveness of these governorates through examining the flow migration and population densities. Hence, they are classified based on the human migration at a particular period. The mobile phone data of type Call Detailed Records (CDRs) have been observed, which fall in a 6-month period during COVID-19 in the year 2020-2021. So, according to the CDRs nature, the well-known spatiotemporal algorithms: the radiation model and the gravity model were applied to analyze these data, and they are turned out to be comp
... Show MoreDiscriminant between groups is one of the common procedures because of its ability to analyze many practical phenomena, and there are several methods can be used for this purpose, such as linear and quadratic discriminant functions. recently, neural networks is used as a tool to distinguish between groups.
In this paper the simulation is used to compare neural networks and classical method for classify observations to group that is belong to, in case of some variables that don’t follow the normal distribution. we use the proportion of number of misclassification observations to the all observations as a criterion of comparison.