In this paper, we investigate and characterize the effects of multi-channel and rendezvous protocols on the connectivity of dynamic spectrum access networks using percolation theory. In particular, we focus on the scenario where the secondary nodes have plenty of vacant channels to choose from a phenomenon which we define as channel abundance. To cope with the existence of multi-channel, we use two types of rendezvous protocols: naive ones which do not guarantee a common channel and advanced ones which do. We show that, with more channel abundance, even with the use of either type of rendezvous protocols, it becomes difficult for two nodes to agree on a common channel, thereby, potentially remaining invisible to each other. We model this invisibility as a Poisson thinning process and show that invisibility is even more pronounced with channel abundance. Following the disk graph model, we represent the multiple channels as parallel edges in a graph and build a multi-layered graph (MLG) in R2. In order to study the connectivity, we show how percolation occurs in the MLG by coupling it with a typical discrete percolation. Using a Boolean model and the MLG, we study both cases of primaries' absence and presence. For both cases, we define and characterize connectivity of the secondary network in terms of the available number of channels, deployment densities, number of simultaneous transmissions per node, and communication range. When primary users are absent, we derive the critical number of channels which maintains supercriticality of the secondary network. When primary users are present, we characterize and analyze the connectivity for all the regions: channel abundance, optimal, and channel deprivation. For each region we show the requirement and the outcome of using either type of rendezvous techniques. Moreover, we find the tradeoff between deployment-density versus rendezvous probability which results in a connected network. Our results can be used to decide on the goodness of any channel rendezvous algorithm by computing the expected resultant connectivity. They also provide a guideline for achieving connectivity using minimal resources.
There are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.
Modify Multi-Connect Architecture (MMCA) associative memory
The development of the internet of things (IoT) and the internet of robotics (IoR) are becoming more and more involved with our daily lives. It serves a variety of tasks some of them are essential to us. The main objective of SRR is to develop a surveillance system for detecting suspicious and targeted places for users without any loss of human life. This paper shows the design and implementation of a robotic surveillance platform for real-time monitoring with the help of image processing, which can explorer places of difficult access or high risk. The robotic live streaming is via two cameras, the first one is fixed straight on the road and the second one is dynamic with tilt-pan ability. All cameras have image processing capabilities t
... Show MoreThe intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is
... Show MoreThis paper proposes a completion that can allow fracturing four zones in a single trip in the well called “Y” (for confidential reasons) of the field named “X” (for confidential reasons). The steps to design a well completion for multiple fracturing are first to select the best completion method then the required equipment and the materials that it is made of. After that, the completion schematic must be drawn by using Power Draw in this case, and the summary installation procedures explained. The data used to design the completion are the well trajectory, the reservoir data (including temperature, pressure and fluid properties), the production and injection strategy. The results suggest that multi-stage hydraulic fracturing can
... Show MoreThe study aimed to identify the news framing on the Israeli Arabic-speaking i24 channel of the Israeli aggression on Gaza -2021 by analyzing the channel’s Program “this evening”. The study used the media survey method, and in its framework, it relied on the content analysis method for the program’s episodes from May 5, 2021 AD until June 4, 2021 AD, with 22 episodes. The study showed the program’s interest in launching the Palestinian resistance’s rockets significantly, followed by the Israeli military operations, and the program’s reliance on correspondents largely as a source of news material related to the aggression. It also proved that a news report and a reporter's report was the most important form of presenting news
... Show MoreThis paper presents a study of a syndrome coding scheme for different binary linear error correcting codes that refer to the code families such as BCH, BKLC, Golay, and Hamming. The study is implemented on Wyner’s wiretap channel model when the main channel is error-free and the eavesdropper channel is a binary symmetric channel with crossover error probability (0 < Pe ≤ 0.5) to show the security performance of error correcting codes while used in the single-staged syndrome coding scheme in terms of equivocation rate. Generally, these codes are not designed for secure information transmission, and they have low equivocation rates when they are used in the syndrome coding scheme. Therefore, to improve the transmiss
... Show MoreSimulation of the Linguistic Fuzzy Trust Model (LFTM) over oscillating Wireless Sensor Networks (WSNs) where the goodness of the servers belonging to them could change along the time is presented in this paper, and the comparison between the outcomes achieved with LFTM model over oscillating WSNs with the outcomes obtained by applying the model over static WSNs where the servers maintaining always the same goodness, in terms of the selection percentage of trustworthy servers (the accuracy of the model) and the average path length are also presented here. Also in this paper the comparison between the LFTM and the Bio-inspired Trust and Reputation Model for Wireless Sensor Network
... Show More