In this investigation, water-soluble N-Acetyl Cysteine Capped-Cadmium Telluride QDs (NAC/CdTe nanocrystals), utilizing N-acetyl cysteine as a stabilizer, were prepared to assess their potential in differentiating between DNA extracted from pathogenic bacteria (e.g. Escherichia coli isolated from urine specimen) and intact DNA (extracted from blood of healthy individuals) for biomedical sensing prospective. Following the optical characterization of the synthesized QDs, the XRD analysis illustrated the construction of NAC-CdTe-QDs with a grain size of 7.1 nm. The prepared NAC-CdTe-QDs exhibited higher PL emission features at of 550 nm and UV-Vis absorption peak at 300 nm. Additionally, the energy gap quantified via PL and UV–Vis were 2.2 eV and 2.3 eV, respectively. The interconnection between the synthesized QDs and the different types of the extracted genomic DNA (both Escherichia coli and healthy subjects) was analyzed optically. This is resulted in a clear shift in the maximum fluorescence emission intensities (observed at 533 nm for an Escherichia coli DNA and 541 for healthy DNA). Overall, the present study findings suggest that prepared QDs could be employed as probes for the detection of pathogenic bacteria DNA from that of healthy subjects.
This paper proposes a new structure for a Fractional Order Sliding Mode Controller (FOSMC) to control a Twin Rotor Aerodynamic System (TRAS). The new structure is composed by defining two 3-dimensional sliding mode surfaces for the TRAS model and introducing fractional order derivative integral in the state variables as well as in the control action. The parameters of the controller are determined so as to minimize the Integral of Time multiplied by Absolute Error (ITAE) performance index. Through comparison, this controller outperforms its integer counterpart in many specifications, such as reducing the delay time, rise time, percentage overshoot, settling time, time to reach the sliding surface, and amplitude of chattering in control inpu
... Show MoreThe Cu(II) was found using a quick and uncomplicated procedure that involved reacting it with a freshly synthesized ligand to create an orange complex that had an absorbance peak of 481.5 nm in an acidic solution. The best conditions for the formation of the complex were studied from the concentration of the ligand, medium, the eff ect of the addition sequence, the eff ect of temperature, and the time of complex formation. The results obtained are scatter plot extending from 0.1–9 ppm and a linear range from 0.1–7 ppm. Relative standard deviation (RSD%) for n = 8 is less than 0.5, recovery % (R%) within acceptable values, correlation coeffi cient (r) equal 0.9986, coeffi cient of determination (r2) equal to 0.9973, and percentage capita
... Show MoreIn this paper, a new equivalent lumped parameter model is proposed for describing the vibration of beams under the moving load effect. Also, an analytical formula for calculating such vibration for low-speed loads is presented. Furthermore, a MATLAB/Simulink model is introduced to give a simple and accurate solution that can be used to design beams subjected to any moving loads, i.e., loads of any magnitude and speed. In general, the proposed Simulink model can be used much easier than the alternative FEM software, which is usually used in designing such beams. The obtained results from the analytical formula and the proposed Simulink model were compared with those obtained from Ansys R19.0, and very good agreement has been shown. I
... Show MoreIn this work, the switching nonlinear dynamics of a Fabry-Perot etalon are studied. The method used to complete the solution of the differential equations for the nonlinear medium. The Debye relaxation equations solved numerically to predict the behavior of the cavity for modulated input power. The response of the cavity filled with materials of different response time is depicted. For a material with a response time equal to = 50 ns, the cavity switches after about (100 ns). Notice that there is always a finite time delay before the cavity switches. The switch up time is much longer than the cavity build-up time of the corresponding linear cavity which was found to be of the order of a few round-trip ti
... Show MoreThis researchs the preparation of particulate polymer composites from Alkyd resin and Iraqi Burn Kaolin which were added as (20%,30%,40%,50%)and comparing with the polymer. It studied Thermal conductivity and Dielectric strength for both of the Alkyd resin and the Composite Material. The result showed an increase in Dielectric strength after adding the Iraqi Burn Kaolin , also the Thermal conductivity was increased by adding the Iraqi Burn Kaolin .
To determine the abilities of salivary E‐cadherin to differentiate between periodontal health and periodontitis and to discriminate grades of periodontitis.
E‐cadherin is the main protein responsible for maintaining the integrity of epithelial‐barrier function. Disintegration of this protein is one of the events associated with the destructive forms of periodontal disease leading to increase concentration of E‐cadherin in the oral biofluids.
A total of 63 patients with periodontitis (case) and 35