In this investigation, water-soluble N-Acetyl Cysteine Capped-Cadmium Telluride QDs (NAC/CdTe nanocrystals), utilizing N-acetyl cysteine as a stabilizer, were prepared to assess their potential in differentiating between DNA extracted from pathogenic bacteria (e.g. Escherichia coli isolated from urine specimen) and intact DNA (extracted from blood of healthy individuals) for biomedical sensing prospective. Following the optical characterization of the synthesized QDs, the XRD analysis illustrated the construction of NAC-CdTe-QDs with a grain size of 7.1 nm. The prepared NAC-CdTe-QDs exhibited higher PL emission features at of 550 nm and UV-Vis absorption peak at 300 nm. Additionally, the energy gap quantified via PL and UV–Vis were 2.2 eV and 2.3 eV, respectively. The interconnection between the synthesized QDs and the different types of the extracted genomic DNA (both Escherichia coli and healthy subjects) was analyzed optically. This is resulted in a clear shift in the maximum fluorescence emission intensities (observed at 533 nm for an Escherichia coli DNA and 541 for healthy DNA). Overall, the present study findings suggest that prepared QDs could be employed as probes for the detection of pathogenic bacteria DNA from that of healthy subjects.
Virtual organization is similar to traditional organization in principles, but is different in the ways it operates. It requires small creation costs compared to the traditional and it uses electronic commerce as the market place and distribution channel for its products and services.The aim of this article is to applying electronic commerce for a proposed virtual organization. The tools used to build an effective web application for virtual organization to provide virtual environment to the customers to do the transaction activities online include PHP, MySQL and Apache. HTML is used for displaying forms and tables and JavaScript is used for verification in client side. Finally, connecting it to 2Checkout.com company as a third party to per
... Show MorePrecision irrigation applications are used to optimize the use of water resources, by controlling plant water requirements through using different systems according to soil moisture and plant growth periods. In precision irrigation, different rates of irrigation water are applied to different places of the land in comparison with traditional irrigation methods. Thus the cost of irrigation water is reduced. As a result of the fact that precise irrigation can be used and applied in all irrigation systems, it spreads rapidly in all irrigation systems. The purpose of the Precision Agriculture Technology System (precision irrigation) , is to apply the required level of irrigation according to agricultural inputs to the specified location , by us
... Show MoreImages are usually corrupted by type of noise called "mixed noise ", traditional
methods do not give good results with the mixed noise (impulse with Gaussian
noise) .In this paper a Simple Cascade Method (SCM) will be applied for mixed
noise removal (Gaussian plus impulse noise) and compare it's performance with
results that acquired when using the alpha trimmed mean filter and wavelet in
separately. The performances are evaluated in terms of Mean Squane Error (MSE)
and Peak Signal to Noise Ratio (PSNR).
Drought is a natural phenomenon in many arid, semi-arid, or wet regions. This showed that no region worldwide is excluded from the occurrence of drought. Extreme droughts were caused by global weather warming and climate change. Therefore, it is essential to review the studies conducted on drought to use the recommendations made by the researchers on drought. The drought was classified into meteorological, agricultural, hydrological, and economic-social. In addition, researchers described the severity of the drought by using various indices which required different input data. The indices used by various researchers were the Joint Deficit Index (JDI), Effective Drought Index (EDI), Streamflow Drought Index (SDI), Sta
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show More