Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for de-noising noisy CCTV images. Data-store is used tomanage our dataset, which is an object or collection of data that are huge to enter in memory, it allows to read, manage, and process data located in multiple files as a single entity. The CAN architecture provides integral deep learning layers such as input, convolution, back normalization, and Leaky ReLu layers to construct multi-scale. It is also possible to add custom layers like adaptor normalization (µ) and adaptive normalization (Lambda) to the network. The performance of the developed CAN approximation operator on the bilateral filtering noisy image is proven when improving both the noisy reference image and a CCTV foggy image. The three image evaluation metrics (SSIM, NIQE, and PSNR) evaluate the developed CAN approximation visually and quantitatively when comparing the created de-noised image over the reference image.Compared with the input noisy image, these evaluation metrics for the developed CAN de-noised image were (0.92673/0.76253, 6.18105/12.1865, and 26.786/20.3254) respectively
MWCNTs-OH was used to prepare a flexible gas sensor by deposition as a network on a filter cake using the method of filtration from suspension (FFS). The morphological and structural properties of the MWCNTs network were characterized before and after exposure to Freon gas using FTIR spectra and X-ray diffractometer, which confirmed that the characteristics of the sensor did not change after exposure to the gas. The sensor was exposed to a pure Freon134a gas as well as to a mixture of Freon gas and air with different ratios at room temperature. The experiments showed that the sensor works at room temperature and the sensitivity values increased with increasing operating temperature, to be 58% unt
... Show MoreThe evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show MoreFurfural is one of the one of pollutants in refinery industrial wastewaters. In this study advanced oxidation process using UV/H2O2 was investigated for furfural degradation in synthetic wastewater. The results from the experimental work showed that the degradation of furfural decreases as its concentration increases, reaching 100% at 50mg/l furfural concentration and increasing the concentration of H2O2 from 250 to 500 mg/l increased furfural removal from 40 to 60%.The degradation of furfural reached 100% after 90 min exposure time using two UV lamps, where it reached 60% using one lamp after 240 min exposure time. The rate of furfural degradation k increased at the pH and initial concentratio
... Show MoreThe corrosion behavior of Titanium in a simulated saliva solution was improved by Nanotubular Oxide via electrochemical anodizing treatment using three electrodes cell potentiostat at 37°C. The anodization treatment was achieved in a non-aqueous electrolyte with the following composition: 200mL ethylene glycol containing 0.6g NH4F and 10 ml of deionized water and using different applied directed voltage at 10°C and constant time of anodizing (15 min.). The anodized titanium layer was examined using SEM, and AFM technique.
The results showed that increasing applied voltage resulted in formation titanium oxide nanotubes with higher corrosion resistance
In the present work advanced oxidation process, photo-Fenton (UV/H2O2/Fe+2) system, for the treatment of wastewater contaminated with oil was investigated. The reaction was influenced by the input concentration of hydrogen peroxide H2O2, the initial amount of the iron catalyst Fe+2, pH, temperature and the concentration of oil in the wastewater. The removal efficiency for the system UV/ H2O2/Fe+2 at the optimal conditions and dosage (H2O2 = 400mg/L, Fe+2 = 40mg/L, pH=3, temperature =30o C) for 1000mg/L load was found to be 72%.
This study focused on the improvement of the quality of gasoline and enhancing its octane number by the reduction of n-paraffins using zeolite 5A. This study was made using batch and continuous mode. The parameters which affected the n-paraffin removal efficiency for each mode were studied. Temperature (30 and 40 ˚C) and mixing time up to 120 min for different amounts of zeolite ranging (10-60 g) were investigated in a batch mode. A maximum removal efficiency of 64% was obtained using 60 g of zeolite at 30 ˚C after a mixing time 120 min. The effect of feed flow rate (0.3-0.8 l/hr) and bed height (10-20 cm) were also studied in a continuous mode. The equilibrium isotherm study was made using different amounts of zeolite (2-20 g) and the
... Show MoreSustainable crop production in a coarse soil texture is challenging due to high water permeability and low soil water holding capacity. In this paper, subsurface water retention technology (SWRT) through impermeable polyethylene membranes was placed at depth 35 cm below ground surface and within the root zone to evaluate and compare the impact of these membranes and control treatment (without using the membranes) on yield and water use efficiency of eggplant inside the greenhouse. The study was conducted in Al-Fahamah Township, Baghdad, Iraq during spring growing season 2017. Results demonstrated the yield and water use efficiencies were 3.483 kg/m2 and 5.653 kg/m3, respectively for SWRT treatment p
... Show MoreIn this research is estimated the function of reliability dynamic of multi state systems and their compounds and for three types of systems (serial, parallel, 2-out-of-3) and about two states (Failure and repair) depending on calculating the structur function allow to describing the behavior of