Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for de-noising noisy CCTV images. Data-store is used tomanage our dataset, which is an object or collection of data that are huge to enter in memory, it allows to read, manage, and process data located in multiple files as a single entity. The CAN architecture provides integral deep learning layers such as input, convolution, back normalization, and Leaky ReLu layers to construct multi-scale. It is also possible to add custom layers like adaptor normalization (µ) and adaptive normalization (Lambda) to the network. The performance of the developed CAN approximation operator on the bilateral filtering noisy image is proven when improving both the noisy reference image and a CCTV foggy image. The three image evaluation metrics (SSIM, NIQE, and PSNR) evaluate the developed CAN approximation visually and quantitatively when comparing the created de-noised image over the reference image.Compared with the input noisy image, these evaluation metrics for the developed CAN de-noised image were (0.92673/0.76253, 6.18105/12.1865, and 26.786/20.3254) respectively
This work deals with thermal cracking of three samples of extract lubricating oil produced as a by-product from furfural extraction process of lubricating oil base stock in AL-Dura refinery. The thermal cracking processes were carried out at a temperature range of 325-400 ºC and atmospheric pressure by batch laboratory reactor. The distillation of cracking liquid products was achieved by general ASTM distillation (ASTM D -86) for separation of gasoline fraction up to 220 ºC from light cycle oil fraction above 220 ºC. The comparison between the conversions at different operating conditions of thermal cracking processes indicates that a high conversion was obtained at 375°C, according to gasoline production. According to gasoline produ
... Show MoreThe catalytic cracking of three feeds of extract lubricating oil, that produced as a by-product from the process of furfural extraction of lubricating oil base stock in AL-Dura refinery at different operating condition, were carried out at a fixed bed laboratory reactor. The initial boiling point for these feeds was 140 ºC for sample (1), 86 ºC for sample (2) and 80 ºC for sample (3). The catalytic cracking processes were carried out at temperature range 325-400 ºC and initially at atmospheric pressure after 30 minutes over 9.88 % HY-zeolite catalyst load. The comparison between the conversion at different operating conditions of catalytic cracking processes indicates that a high yield was obtained at 375°C, according to gasoline pr
... Show MoreBackground: The repair of bone defects remains a major clinical orthopaedic challenge. Bone is a highly vascularised tissue reliant on the close spatial and temporal connection between blood vessels and bone cells to maintain skeletal integrity. This study aimed to study the efficacy of Panax ginseng as a osteoinducer in tibia of rat and as a stimulator for bone healing and to study the immunohistochemical expression of osteonectin as bone formation markers in experimental and control groups during bone healing. Material and method: : In this study thirty albino male rats , weighting (200-300) gram ,aged (2-3) months ,will be used under control conditions of temperature ,drinking and food consumption. The animals will subject for an
... Show MoreThe purpose of this study is aimed to lay down an arranged platform suited to Iraqi constructional associations which in charge to carry out multi constructional projects, as it fulfilled management requirements and supervising, so that low - cost projects will be controlled in due term and quality. Based on primary info and observed data collected, the study thesis has been formulated in this way: Iraqi constructional sector bodies which are in charge to implement simultaneously multi constructional projects in need to reformulate its organized structure so that it will be more fitted to management and control of these projects. This thesis includes a
theoretical part contained presenting the most important resources locally and int
In high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection cri
... Show MoreThis research develops a new method based on spectral indices and random forest classifier to detect paddy rice areas and then assess their distributions regarding to urban areas. The classification will be conducted on Landsat OLI images and Landsat OLI/Sentinel 1 SAR data. Consequently, developing a new spectral index by analyzing the relative importance of Landsat bands will be calculated by the random forest. The new spectral index has improved depending on the most three important bands, then two additional indices including the normalized difference vegetation index (NDVI), and standardized difference built-up index (NDBI) have been used to extract paddy rice fields from the data. Several experiments being
... Show MoreEvidences indicate that human beings were preoccupied with extreme forms of mental and psychic experiences long before they were recorded in literature. Greek myths and legends appear to include symbolizations of delusions, mania, and other bizarre forms of thought and behaviuor. The figure of the mad man or woman is analogous to the wild man, or the imaginary being who appears in various forms throughout western literature and art. Various studies refer to the notion of the wild man as a response to a persistent psychological urge. This urge gives an external expression and a valid form to the impulses of reckless physical self-assertion which is believed to be hidden in all of us, but is normally kept under control. Such impulses were exp
... Show More