Preferred Language
Articles
/
Vha2ZIkBVTCNdQwCSYkW
Improvement of noisy images filtered by bilateral process using a multi-scale context aggregation network
...Show More Authors

Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for de-noising noisy CCTV images. Data-store is used tomanage our dataset, which is an object or collection of data that are huge to enter in memory, it allows to read, manage, and process data located in multiple files as a single entity. The CAN architecture provides integral deep learning layers such as input, convolution, back normalization, and Leaky ReLu layers to construct multi-scale. It is also possible to add custom layers like adaptor normalization (µ) and adaptive normalization (Lambda) to the network. The performance of the developed CAN approximation operator on the bilateral filtering noisy image is proven when improving both the noisy reference image and a CCTV foggy image. The three image evaluation metrics (SSIM, NIQE, and PSNR) evaluate the developed CAN approximation visually and quantitatively when comparing the created de-noised image over the reference image.Compared with the input noisy image, these evaluation metrics for the developed CAN de-noised image were (0.92673/0.76253, 6.18105/12.1865, and 26.786/20.3254) respectively

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Applied Energy
Deep clustering of Lagrangian trajectory for multi-task learning to energy saving in intelligent buildings using cooperative multi-agent
...Show More Authors

The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is

... Show More
View Publication
Scopus (20)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Baghdad Science Journal
Symmetric- Based Steganography Technique Using Spiral-Searching Method for HSV Color Images
...Show More Authors

Steganography is defined as hiding confidential information in some other chosen media without leaving any clear evidence of changing the media's features. Most traditional hiding methods hide the message directly in the covered media like (text, image, audio, and video). Some hiding techniques leave a negative effect on the cover image, so sometimes the change in the carrier medium can be detected by human and machine. The purpose of suggesting hiding information is to make this change undetectable. The current research focuses on using complex method to prevent the detection of hiding information by human and machine based on spiral search method, the Structural Similarity Index Metrics measures are used to get the accuracy and quality

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Clarivate Crossref
Publication Date
Tue Dec 03 2013
Journal Name
Baghdad Science Journal
Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means
...Show More Authors

Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Using Fuzzy Clustering to Detect the Tumor Area in Stomach Medical Images
...Show More Authors

Although the number of stomach tumor patients reduced obviously during last decades in western countries, but this illness is still one of the main causes of death in developing countries. The aim of this research is to detect the area of a tumor in a stomach images based on fuzzy clustering. The proposed methodology consists of three stages. The stomach images are divided into four quarters and then features elicited from each quarter in the first stage by utilizing seven moments invariant. Fuzzy C-Mean clustering (FCM) was employed in the second stage for each quarter to collect the features of each quarter into clusters. Manhattan distance was calculated in the third stage among all clusters' centers in all quarters to disclosure of t

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Feb 14 2024
Journal Name
Aip Conference Proceedings
Segmentation Moon Images Using Different Segmentation Methods and Isolate the Lunar Craters
...Show More Authors

Segmentation is the process of partition digital images into different parts depending on texture, color, or intensity, and can be used in different fields in order to segment and isolate the area to be partitioned. In this work images of the Moon obtained through observations in Astronomy and space dep. College of science university of Baghdad by ( Toward space telescopes and widespread used of a CCD camera) . Different segmentation methods were used to segment lunar craters. Different celestial objects cause craters when they crash into the surface of the Moon like asteroids and meteorites. Thousands of craters appears on the Moon's surface with ranges in size from meter to many kilometers, it provide insights into the age and ge

... Show More
Scopus (1)
Scopus Crossref
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means
...Show More Authors

Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.

View Publication Preview PDF
Crossref
Publication Date
Wed Feb 14 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Segmentation moon images using different segmentation methods and isolate the lunar craters
...Show More Authors

Segmentation is the process of partition digital images into different parts depending on texture, color, or intensity, and can be used in different fields in order to segment and isolate the area to be partitioned. In this work images of the Moon obtained through observations in Astronomy and space dep. College of science university of Baghdad by ( Toward space telescopes and widespread used of a CCD camera) . Different segmentation methods were used to segment lunar craters. Different celestial objects cause craters when they crash into the surface of the Moon like asteroids and meteorites. Thousands of craters appears on the Moon's surface with ranges in size from meter to many kilometers, it provide insights into the age and geology

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Jan 17 2017
Journal Name
International Journal Of Science And Research (ijsr)
Detection System of Varicose Disease using Probabilistic Neural Network
...Show More Authors

Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Comparison Study of Electromyography Using Wavelet and Neural Network
...Show More Authors

In this paper we present a method to analyze five types with fifteen wavelet families for eighteen different EMG signals. A comparison study is also given to show performance of various families after modifying the results with back propagation Neural Network. This is actually will help the researchers with the first step of EMG analysis. Huge sets of results (more than 100 sets) are proposed and then classified to be discussed and reach the final.

View Publication Preview PDF
Publication Date
Sat Oct 01 2016
Journal Name
2016 2nd International Conference On Science In Information Technology (icsitech)
Cloud computing sensitive data protection using multi layered approach
...Show More Authors

View Publication
Scopus (3)
Scopus Crossref